
Journal of  Statistical Physics, Vol. 14, No. 3, 1976 

Dynamical Perturbation for 
Classical Fluids: A Solvable 
Model 
A.  G e r v o i s  I a n d  Y .  P o m e a u  1 

Received July 24, 1975 

We investigate on a one-dimensional model the perturbation to the time- 
dependent correlations in a classical fluid when a small interaction is added 
to a hard core. Various formulas have already been proposed for this 
correction. We verify on this model, for which everything can be calculated 
explicitly, that the expressions proposed by Frisch and Berne yield strongly 
divergent time integrals for the diffusion coefficient. On the contrary, when 
all corrections are accounted for, the correction to the velocity time 
correlation is shown to decay like (ln t)/t 2 at large times, yielding a finite 
first-order correction to the diffusion coefficient. The extension of this 
calculation to a gas of hard rods in the case of a perturbation with an 
infinite range is discussed. 

KEY WORDS: Nonequilibrium statistical mechanics; hard point one- 
dimensional gas; small perturbation; long time behavior. 

1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

M a n y  e q u i l i b r i u m  p rope r t i e s  o f  dense  classical  f luids m a y  be  u n d e r s t o o d  by  

c o n s i d e r i n g  the  t w o - b o d y  forces  as the  s u m  o f  a repu ls ive  i n t e r ac t ion  w i t h  a 

shor t  r ange ,  as, for  ins tance ,  the  r epu l s ion  b e t w e e n  h a r d  spheres ,  p lus  a smal l  

a t t r a c t i ve  p a r t  (1~ wh ich  is to be  t r ea t ed  as a p e r t u r b a t i o n J  2~ I t  is o f  cou r se  

ve ry  t e m p t i n g  to  ex t end  the  s a m e  idea  to  n o n e q u i l i b r i u m  p rope r t i e s  o f  c lass ical  
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fluids. Frisch and Berne (a) and other  authors  (4'~) have proposed explicit 
formulas for the correction to the velocity correlation function due to a small 
attractive potential in a hard sphere fluid. The computer  experiments o f  
Watts  (6~ showed that  these formulas yield strongly divergent time integrals. 
A number  o f  effects were not  considered in the theory o f  Frisch and Berne. 
Pomeau  indicated how to carry out  an explicit calculation o f  the first-order 
correct ion due to a small added interaction. (7~ However,  it seems interesting 
to s tudy this problem on an explicit example, where everything can be 
computed, explicitly. Also, this calculation should not  be restricted by the 
assumpt ion of  a low density, since, as stated by Watts,  (6~ the divergence o f  
the correction of  Frisch and Berne bears some connect ion to the virial par t  
of  the equilibrium pressure, which is negligible in this low-density limit. 

In  the present paper, we shall study a model  where such a dynamical  
per turbat ion calculation can be done explicitly. As shown by Jepsen (a~ and 
Lebowitz e t  al . ,  (9'1~ the velocity time correlat ion o f  a one-dimensional 
system of  hard points may  be found  exactly. Following the same general 
method as these authors,  we have found explicit expressions for the first 
correction to this time correlat ion function, due to a small per turbat ion o f  
the interaction. Moreover ,  we have indicated how to compute  the same correc- 
t ion for a one-dimensional  gas o f  ha rd  rods. 2 Before discussing more  precisely 
the points under consideration, we first recall the general method  for comput-  
ing the lowest order correction to the velocity time correlation. Then, we 
recall the main features of  the solution for the one-dimensional system o f  
hard points, as found  by Jepsen (8~ and Lebowitz et  al. (9"1~ This method  is 
applied to the exact calculation of  the correction proposed by Frisch and 
Berne. It  is shown to be divergent in this one-dimensional case, and this 
divergence is very similar to the one found by Wat ts  in the three-dimensional 
case. 

1.1. General Formulas 

Let us begin with some definitions and notations.  
The reference fluid is the fluid where particles interact through the un- 

2 Actually, the case of a gas of hard points with an attractive interaction must be ap- 
proached with caution. Since an infinite number of particles may be on a segment of 
finite length, the energy of this system is not bounded from below by a quantity 
proportional to the number of particles, and no thermodynamic limit exists. However, 
this catastrophe has no influence to first order in the ~tmplitude of the perturbing 
potential, say 7/, as the factor in front of r/does not depend on the sign of ~7. There is 
only a strong indication that any dynamical quantity has a nonanalytic behavior with 
respect to ~7 near ~ = 0 for a hard point system with an interaction of amplitude ~7- For 
an attractive potential, one must consider hard rods with a finite size (instead of hard 
points of zero thickness) in order to avoid the catastrophe alluded to above. This hard 
rod system with a small interaction is briefly discussed at the end of the present paper. 
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perturbed potential only. Averages over an equilibrium ensemble of initial 
conditions for the reference fluid are labeled by the index R : (  )z~. The 
perturbation is denoted by 8U([r~ - rjl ) = 8U~. Though it is not necessary 
so far, we shall restrict it from now on to a square well perturbation 

8g~j = ve[a - t r ~ -  rjl] (1) 

where ,/is the depth of the square well, for which/3~ 7 << 1 (/3-1 = kr3T; kB is 
the Boltzmann constant and T is the absolute temperature), and where E(x) is 
the Heaviside step function: e(x) = 0 if x < 0, and e(x) = 1 if x t> 0. 

Actually, this allows one to treat any kind of perturbating potential to 
first order, since any potential which is sufficiently regular can be considered 
as a sum of a continuous set of square wells following the formula 

3U(r) = da [dU(a)/da]e(a - Irl) 

so that the linear correction to the velocity time correlation, namely 8~b(t), 
can be computed for a given potential ~U(r) through 

fo +~ 
aq,(t) = da [dU(a)/dal 8~b(t; a) 

where 8~b(t; a) is the correction to ~b(t) computed for a square well of  width a 
and unit depth [from now on we shall drop the argument a in 8r a), so that 
8~b(t) shall stand everywhere for the correction arising from a square well 
of width a]. 

The velocity time correlation of the reference fluid is ~b(t) = <vl(O)vl(t)>~. 
When the reference potential is a hard core repulsion, its first-order correction 
can be written as the sum of three terms 

8 

a (t) = (2)  
s  

each of them being expressed by a quantity averaged over the reference fluid: 

1. The correction 8~bz(t ) arises from the expansion of the statistical weight 
to first order in the perturbating potential 

2. The correction 82~b(t) takes into account the small change in the 
velocity vz(t) due to the perturbating potential 

3. The correction 83~b(t) accounts for the delay in the collision time because 
of the small displacement of the trajectories. 

A correct definition of these last two quantities is not obvious, so let 
us define 8#(t)  (i = 1, 2, 3) more precisely. 
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(i) The contribution 3~b(t) is well known. This is simply 

31~b(t) = - f i<v~(O)vlR(t)~ [SUit-<~U~j>R]>R (3) 

the sum ~i~j running over the whole set of nonordered pairs in the system. 
vlR(t) is the velocity of particle 1 at time t on the trajectory of the reference 
system. 

(ii) The correction 32~b(t) arises from the small change in the velocity 
v~(t) due to the perturbing interaction. 

Suppose that particles i a n d j  start with the unperturbed velocities v~ and 
vj at t = 0 and that their mutual distance becomes equal to a (range of the 
square well) at some later time 6~, so that r~jv~j < 0 and no other interaction 
affects the motion of i a n d j  between 0 and t~j ; thus, the relative velocity of i 
and j just after t~j is 

v~j = sg v~j(v~j 2 - 4~7) 1/2 (4) 

where sg x = 1 if x > 0 and - 1 otherwise. Note that in Eq. (4) we took the 
mass of the hard points as the unit mass. If v~9 becomes smaller than 41~7], 
formula (4) becomes meaningless in the repulsive case as the particle is 
reflected by the square well. As shown in Section 3, this last effect is not 
important to first order in/37 . Except for this small region in velocity space, 
the difference v~j - v~j is of order 7. In order to account for this contribution 
of the small deviations, Frisch and Berne ~s~ have derived the following 
formula, which should be valid for a hard sphere reference fluid: 

( ~ 3U~j(r~j(0))> (5) 32'~b(t) = [r~(t) -- rl(0)]l~ ~ .  

the prime indicates that our formula for 32~b(t) wiI1 not be this one. 
Watts (~) has shown by computer experiments that for large times 

32'~b(t) has a nonzero finite limit. This will be confirmed by an explicit 
calculation of 32'~b(t), which may be done quite simply in the one-dimensional 
case. On the other hand, we have shown (7) that Eq. (5) does not fully account 
for the effect of the small deviations of the hard sphere trajectories. But, 
contrary to Berne and Frisch, we have not found any closed formula for 
82~b(t), this quantity being just given by a kind of recipe requiring a detailed 
knowledge of a trajectory of the reference system. 

(iii) The origin of the last contribution to 3~b(t), i.e., 8s~b(t), is less obvious 
than those of 3~b(t) and 82~b(t). In fact, due to the small deviations of the 
trajectories caused by the potential 8U, a hard point collision between, say, 
particles i and j does not occur at time 6j, as in the reference system, but 
at time t~j + 8t~j. Take, for instance, 3t~j > 0, and let v~ and vj be the velocities 
of i and j before the collision; thus during the time interval [6j, t,j + 3t,~], 
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the velocity of, say i, is vi in the perturbed system, although it was v~ in the 
reference system. During this small lapse of time the change of velocity of i is 
large, and its amplitude does not vanish at ~ = 0 (,7 is the depth of the per- 
turbing potential), although its duration is of order [~l. However, the net 
effect of the equilibrium average over the initial conditions is roughly 
equivalent to a time integration of this velocity change, so that small devia- 
tions during a finite lapse of time [as the one accounted for through ~2~b(t)] 
and a finite deviation during a small period of time may contribute to the 
same order in ~. Actually, this is verified in the one-dimensional model. It 
turns out that the contribution 83~b(t) requires the most intricate calculation. 

1.2. The Mode l  and the Correct ion of  Berne and Frisch 

In this subsection, we present the main features of the hard points 
dynamics, as analyzed by Jepsen (8~ and Lebowitz et al. <9"1~ We then study a 
simple time correlation function, which yields the correction found by 
Berne and Frisch. 

The reference fluid is a gas of hard points, on an infinite line, which will 
be taken as the limit of a system of N points on a line of length L, L ~ 0% 
with NIL = O finite. A number of dynamical quantities of this system may 
be computed using the method of Lebowitz et al. The basic idea is to replace 
the dynamical quantities of a hard point gas by some other dynamical 
quantities of a one-dimensional gas of noninteracting (or "free")  points, 
which, in principle at least, depend in a very simple way on the initial condi- 
tions. At time t = 0, one defines the rank of a particle i on the line, which is 
measured by the integer 

 i(0) =  [ri(0) - r j (0)]  (6 )  

In the hard point system, there is only an exchange of indices at each collision, 
so that the velocity and position of particle i at time t in the hard point system 
are those of particle k in the free point system with the same initial conditions 
and such that 

= 4 k(t) - 

is equal to ~(0). 
Let r~(t) and v~(t) be the position and velocity of a particle i at time t 

in the hard point (reference) system, {rz(O), v~(O)} being the set of the initial 
conditions. Then, any function f of r~a(t) and v~(t) depends on the initial 
conditions as 

f[r,~(t), v~R(t)] = ~ 3~,co>,o~t>f[r~(O ) + vk(O)t, vk(0)] (7) 
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where 3m, n is the Kronecker symbol: 

f02~ 8r~ = (dO/2rr) e ~~ =~ (8) 

From Eqs. (5) and (7), the dynamical correction of Berne and Frisch is 

where 8Flj(0)= -OU[rz (0 ) -  rj(O)]/arl(O) is the small force exerted by 
particle j on particle 1 at time 0 (in this calculation, we shall not restrict 
ourselves to a particular potential) and where the average is taken on an 
equilibrium ensemble of initial conditions for the free point system as 
indicated by the subscript fp. After reduction of the sums ~j and ~k in (9), 
we find three terms corresponding to the following combinations of indices: 
(i) k = 1, j  r 1; (ii) k # 1, j  = k; (iii) 1,j, k all different. 

It may be shown that the first and second combinations yield a contri- 
bution to 8='~b(t) vanishing at large times, although the third one gives a 
nonzero constant in this limit: 

32'~b(t) - - ( N  - 1)(N - 2)((rz + v2t - r l )  aFla(0) 3o2(t),ol(0)}f p 
t"*m 

In this last expression, we have replaced r2(0), v2(0) . . . .  by r2, v2,. �9 .. 
We carry out the ensemble average explicitly and get 

82'~b(t) -- - ( N  - 1 ) ( N -  2) dv~ho(vx) dv3ho(v3) 
t--* oo oo oo 

f] ~ dO . 
x ~ exp{z0[e(r2 - rl + v2t - v l t )  - e(rl - r2)]} 

N ~ + m  

x exp{iO[e(r2 - ra + vat - vat) - e(rl  - r3)]} ~ dv~ ho(v 3 
~=4 - m  

x fLI2  ~ exp{iO[e(r2 - r~ + v J -  vd)  - E(rl - r3]} 
d - - L / 2  

where 

ho(v) = [1/(2rr) 1/2] exp( -  v 2/2) (10) 

(the energy unit is chosen in such a way that m / k B T  = 1). In the N - +  oo 

limit, the last factor on the right-hand side (i.e., I ~  >. ~ f dvz. �9 .) is replaced by 
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where Ix(x) is the collision f requency 

Ix(x) = f+__~ dv ho(v) lv  - x] 

= 2ho(x )  + 2 x  Erf  x 
with 

(1 la) 

(1 l b) 

p X  

E r f x  = Jo dv ho(v) ( l l c )  

After  we integrate over  vl and v3, set x = (r l  - r2)/t ,  y = (r l  - ra)/ t ,  

oJ = (r2 - r~)/ t  + v2, and integrate over  rl  and x, we get 

t dco - -  82 '~( t )  to~o - ~_ oo oJ J0 2~r (Pt)2 exp{ito(sin 0)co - to(1 - cos 0)ix(co)} 

x 2 - (i - # 0 ) E r f w  1 + e -~~ ~2- (1 - e-~~ 

x d y  1 + (1 - e *~ Eft(o) + y )  e -i~ 8 F ( t y )  (12) 
| 2 

Except  for  the factor  exp{itp(sin 0)co - pt(1 - cos 0)/z(o))}, the integrand 
on the r ight-hand side of  (12) m a y  be rear ranged into a po lynomia l  in 
(1 - cos 0) and (i sin 0). Using the saddle point  me thod  as explained in 
Appendix  A, we can show tha t  the contr ibut ions of  the various terms of  this 
po lynomia l  behave as t -  1 as t ---> 0% except for  the following term:  

a ; r  --- t ,o do~ t . . . . .  ~ (pt) (t s m  0) 

fo+~ x exp{itp(sin 0)~o - tp(1 - cos 0)ix(co)} d y  3 f ( t y )  

_~ 8U(lr[ = 0) do) o~ 2 
~o [ix2(~-)i2T~ ~/2 ( P t ) 2 { e x p [ - p t i x ( ~  

x Io(pt[ix2(@ - o)21 ~/2) (13) 

where I0 is the modif ied Bessel funct ion of  order  zero and  ~f(Ir I = 0)  is the 
limit value of  the per turba t ing  potential ,  which is assumed to be cont inuous 
and bounded  at short  distances. The  integral on the rhs of  (13) can be 
evaluated again by the saddle poin t  me thod  and we get the simple final result 

82'~( t )  ~ ~U(Irl)lr=o (14) 
t---~ oo 

In  this last formula ,  we recover quali tat ively the result of  Watts ,  i.e., 
82'~b(t) has a nonzero limit at t -+  o% but  in contradic t ion to the s ta tement  by 
Watts ,  this value is not  connected directly to the virial pa r t  o f  the equil ibrium 
pressure,  at  least for this one-dimensional  case. 
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Now we shall consider successively the corrections ~b(t),  ~2r and 
Sash(t), which, as explained above, arise from the expansion of the equilibrium 
weight, from the direct effect of the small interactions on v~(t), and from the 
time delay in the hard point collisions, respectively. 

2. C O R R E C T I O N  A R I S I N G  F R O M  THE STATISTICAL W E I G H T  

From Eqs. (3) and (7), using the same notations as in (9), we get for this 
correction (fi = 1) 

8z~b(t) = � 8 9  ~ v~k(o,ol~o) ~ [ S U ( r ~ - r j ) - < S U ( r ~ - r j ) ) ] )  (15) 
k=l ~] 

~.,j = I...,N 

We have now six different terms to calculate, corresponding to the following 
six combinations of indices: 

(i) k = 1 ; i =  1 ; j #  1. 
(ii) k = 1; 1, i , j  all distinct. 

(iii) k #  1 ; i =  1 ; j = k .  
(iv) k #  1 ; i =  1 ; j #  k. 
(v) k # 1 ; i =  k ; j #  1, k. 

(vi) 1, i,j, k all different. 

The six quantities to be calculated are now 

T1 = (N - 1)<v1218U12 - @Ua~)] ~1(t),~1(0)) (16a) 

T2 = �89 - 1)(N - 2)<v1213U2a - <SU2a)] 3o1(o,o~(0)) (16b) 

T3 = ( N -  1 ) ( N -  2)<v~v218U~2- <3U~2)] ~2a),~i(o)> (16c) 

T4 = (N - 1)(N - 2)<vzv2[3U~a - <3U~3)] 3o2(t),~1(o )) (16d) 

T~ = (N - 1)(N - 2)<v~v213U2a - <SU2a)] 3~2a>,~1(o)) (16e) 

7"6 = �89 - 1)(N - 2)(N - 3)<v~v2[SUa~ - <8U3~)] 8oz(t).o~(o)) (16f) 

where we have dropped the subscript fp. The final result is 

6 

$~b(t) = ~ T, (17) 

The details of the evaluation of the T~ are given in Appendix B. Let us just 
sketch the method of calculation. It is not completely straightforward, as the 
quantity <SU~j) for a given pair (i,j) vanishes in the thermodynamic limit. 
For some T~, it may be completely neglected, although for others it must be 
kept in order to get a finite result in the thermodynamic limit. 

Consider, for instance, the case of/ '2 .  A partial average can be taken at 
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once over the positions of the dummy particles, i.e., particles with an index 
j 1> 4. Let us denote by ( )j ~> ~ this partial average. Thus, 

(2~ dO 
(8~l(t),ox(o))jza =Jo N exp{iO[E12(t) -- q2(0)]} exp{iO[q~(t) -- eza(0)]} 

x [exp{itp(sinO)vt--pt(1--cos0)/~(vl)}+ O ( 1 ) ]  (18) 

where O(1/N) depends on 0, t, v~ only and where e~j(t) = e[r~(t) - rj(t)]. As 
a function of r~(0), the quantity q2(t) - q2(0) differs from zero over a finite 
interval around rl(0); writing 

exp{iO[e12(t) - q2(0)]} = I + q~(r2(O), t) 

we find that the function ~b~(r2(0), t)--which depends also on 0, vz, ri(0), and 
v2--differs from zero over a finite interval around rz(0). Then, from (18) 

f ]~ dO 
(8~(t,,ol<o))j~ = ~ [1 + ~b~(r2(O), t)][1 + ~1(r3(0), t)] 

x [exp{itp(sin O)vx - pt(l - cos O)/x(v~)} + O ( 1 )  ] 

Expanding the product [1 + ~b~(r2(0), t)][1 + ff~(ra(0), t)] and inserting the 
corresponding value of (3o~(t~,oi(o~)j ~ 4 into (16b), we find three kinds of terms. 
The first does not depend on ~b~; it depends on positions through the com- 
bination (~U23 - (~U2a)) only and, once averaged, this gives zero. Another 
term depends linearly on ffl(r2(0), t) [or on ~l(ra(0), t)] and, after averaging 
over ra(0) [or r2(0)], it gives again zero. The only term surviving in the 
thermodynamic limit is the one that is formally quadratic in q~. Due to the 
presence of the two factors ~ ,  the integration over r2(0) and ra(0) is limited 
to a finite interval around rl(0). In this domain (~U2a) ~ (alL)~U2a, so 
that one may neglect therein both (~U2a) and the corrections O(1/N) to 
exp{itp(sin O)vl...} and one obtains 

r 2~ dO 
T2 = �89 - 1)(N - 2) v, 2 3U2a ! - -  exp{itp(sin O)v~ - (1 - cos O)ptlx(v~)} 

20 2,~ 

x $~(r2(0), t)~(ra(0), t ) ~  (19) 

Very similar reasoning allows us to get explicit and finite integrals from 
the general formulas given in (16). All these contributions reduce to one- or 
two-dimensional integrals, which we have calculated by a Gauss integration 
method. The results are plotted on Fig. 1. After some oscillations, the function 
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31r goes monotonically to zero with increasing time. The saddle point 
method discussed in Appendix A shows that, at long times, 

- -  pa / (o t )  (2o) 
t ~ o O  

Thus Sl~b(t) provides a finite correction to the self-diffusion coefficient. 
Moreover, we can find a few other exact properties of 31r such as the slope 
at the origin, which is studied in Appendix B. Further, we have been able 
to show that, when the range of the potential increases, 3~b(t) goes to a finite 
limit function. 

3. C A L C U L A T I O N  OF THE C O R R E C T I O N  32~(t) 

As explained at the beginning of this paper, the correction to the velocity 
time correlation due to the perturbing potential may be divided into three 
parts. Now, we shall consider the term denoted 82r which arises from the 
small changes in v~(t) due to the interaction SU. As we restrict ourselves to 
perturbations linear in 3U, we can write this velocity shift as 

3vl(t) = ~ 3v(~'(t) 
t r  

/ 
I 

o=0.1 
0=0.5 

2 3 

0=1. 
.0=2.  

pt 

Fig. 1. Plot of the contr ibution to 3r arising from the perturbat ion to the statistical 
weight as a function of time for several values of the potential range. 
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where 8v(~)(t) is the difference between the velocity v d t )  in the reference 
system and that  in the system where the interact ion 8Uz~ is turned on at t ime 
zero. F r o m  (7), one can express the values of  8vz in the hard  point  system 
by means  of  8vl for  the free poin t  system: 

i ts]r  

where av~(t) is now the change of  velocity of  particle 1, due to the inter- 
act ion aUz~ in the free point  system. Thus 

ig ,  h: k 

where, again, the average is taken over the equil ibrium ensemble of  non- 
interacting points. Due  to the two summat ions  on the r ight-hand side of  
(21), 32~b(t ) splits into three parts  

with 

and  

3 

82~b(t ) = ~ (.7:. (22) 
y = l  

U, = (N - 1)<v, avi ~' a,~<~),~(0~> 

U2 = (N - 1)@1 3v2 ) 3~2(t).o~(0)> 

(23a) 

(23b) 

Ua = (N - 1)(N - 2)@1 8v(2 a~ 8~=m.,,(o)) (23c) 

We have now to express 8v(~ ~ as a funct ion of  r/, of  the range a, and of  
the velocities in the unper tu rbed  system. Two cases m a y  occur, depending on 
whether  or not  i and k interact  th rough  8U~k at t ime zero. Let  us consider 
them successively. In the for thcoming  discussion, we shall write r~, rk .... 
instead of  r~(O), rk(0),.... 

(i) Part ic les  i and  k Do  N o t  In teract  at t = 0 (see Fig. 2a). The condi t ion 
for  the nonvanishing of  3v~ ~ is therefore 

I r , -  rkf > a 

and (r~ - rk)(v~ - vk) < 0; with these initial conditions,  8v{ ~) takes a constant  
value, which is 

-~[sg v~,(G - 4,~) 1~ - v~d 

at any  t ime t such that  lr,(t) - rk(t)] < a; thus the corresponding contri-  
but ion to 8G *) is 

8v~ ) = �89 vk~(v~i - 4"]) 1/2 - v~l~([rk~[ - a) 

x E ( a -  ]r~i + vkit])e(--rk~v~) (24) 
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t=O i k r~ 

~ 
\, 

(o) 

(b) 

t = 0  i k r 

t 

F ig .  2.  Deviationofthetrajectoriesoftwofreepointswhenasmallperturbationisadded, 
for two cases: (a) The distance between the two particles is greater than a at time zero. 
(b) The distance between the particles is less than a at time zero. 

In  order to write (24), we have assumed that, even during the interaction, 
the relative distance between i and k remains equal to (r,~ + v j ) ,  which is 
strictly true in the free point  system only. However,  the corresponding 
correction arising f rom the durat ion o f  the collision, i.e., the change in 
E(a - Ir~ + v~tl) ,  yields contributions to 3v~ k) which are of  order v 2 at 
least. Fur thermore,  in order to get f rom (24) an expression for 3v~ ) which is 
linear in 7, one must  expand the velocity difference as follows: 

27 272 + .-. (25) sg v~i(v~-  47) 112 - vg~ = vk~ v~i 

and keep the first term on the r ight-hand side only. But this expansion must  
be considered carefully; in fact, as is often the case in this type of  problem, 
the terms that  are formally o f  an increasing order  in the small parameters 
may  yield more  and more  diverging quantities. In the present case, the terms 
of  order 7 n are actually of  the form 7n/v 2~- 1, and this may give a diverging 
contr ibut ion to 3~b(t), due to the average over the velocity vk~ near vk~ = 0. 
However,  the negative powers on the r ight-hand side of  (25) are cancelled in 
part. In  fact, the range of  variation o f  r~ is o f  order [vk~[t around rk~ = a; this 
makes a quanti ty o f  order tvk~l appear  in the integrand, so thane the factor  
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v~ 1 in the first term on the rhs of (25) is just cancelled by this vk~ and no 
divergence appears at this order in -q. However, at the next order in v, a 
divergence appears which should ultimately yield a contribution to ~2~b(t) 
like ~7 a~2, as shown in Appendix D. 

If  the potential is repulsive (i.e:, if ~ > 0), the formula in (24) becomes 
meaningless if ]vk~] < (4~) 1/2, which means that the relative particle does not 
have enough kinetic energy to go over the potential barrier. However, it may 
be shown that this range of the small relative velocities contributes as ~ to 
32r In fact, let us consider the corresponding contribution to 3v~), which 

.%,(t) 2 we shall denote as v~k ,2. From simple dynamical considerations 

Sv~)],2--- -�89 - v~,)~(lrk, I -, a ) e ( - - r k i v k ~ ) e ( a -  ]r~ + v ~ t l )  (26) 

when v~ becomes small, the product E(lr,~] - a ) 4 a  - Ir,~ + v~t]) becomes 
concentrated around r~k = + a in a small interval of width I v~kl t. Accordingly, 
it may be expanded like 

E(lr ] - a)~(a - ]r + vt])  

"-  [vIt ~([r I - a) - �89 2 ~'(Ir[ - ) a  + ~ ( v t )  3 ~"([r I - a) (27) 

where we have dropped the subscript i k  and where, by definition, 3(")(x) is 
such that 

( ~ ~ 3 (" ) (x ) f ( x )  d x  = ( - ) ~ ( d " / d x " ) f ( x ) l ~  = o 
d -  

Inserting the expansion (27) into (26), weget  series of functions 3(0, 6 '(0 .... 
multiplied by increasing powers of v and Iv[" v]v], v a, viva[ ..... Without any 
assumption about the parity in v of the rest of the integrand, we get, after 
averaging, contributions which are at most of order ~3/~, ~2,.... This means that 
the contribution of particles that cannot go over the potential is at most of 
order ~a/2, and it can be neglected in the linear approximation. 

(ii) Par t i c l e s  i a n d  k I n t e rac t  a t  t = 0 (Fig. 2b). In this case, ~v~ ) differs 
from zero only when tr~k(t)I >1 a. Furthermore, if the potential 3U~k is 
attractive 07 < 0), Sv~ ~ takes a particular form in the range Irks] < (4]~]) ~r 
which corresponds to classical bound states for particles i and k. However, 
as in the previous case, this gives a contribution to ~v~ ) which is negligible 
to first order in ~ and the main contribution to 3v~ ~) arising from particles 
interacting at t = 0 is 

3v~' = �89 vk~(v~ + 4V) l/~ - vz~]e(a - Ir~])e(]r~ + v,,t] - a )e (v~  - 2n) (28) 

It will be often convenient to replace in this last expression e([r~ + v ~ t  l - a) 
by 

a Ir,.I - -  a~ 
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Moreover, as explained in Appendices C and D, one may replace 

sg v~(v~ + 4~/) 1t2 - vk~ by 2~l/vk~ 

without making any divergence appear in 32~(t). 
Inserting into (23) the value of 3v~ ~ that is the sum of the right-hand sides 

of Eqs. (24) and (28), we get the final expression for 32~b(t), which depends on 
a number of integrals listed in Appendix C. In this appendix, we have also 
studied the asymptotic behavior of the Us, as it governs the existence of the 
correction to the self-diffusion coefficient, which is the time integral of 
~b(t). For U1 and U3, this asymptotic behavior is 

U1, Ua ~-- [pa/(pt) 21 ln(pa/pt)  
t ~ c ~  

On the contrary, it turns out that U2 decreases at infinity like l / t;  more 
precisely 

U2 ~ - [2~/(2rr)l/Z]pa/pt 

whence the asymptotic behavior for 32~b(t): 

32~(t) t.~- (27r) 1/2 pt + ( ~  A In + B + .... (29) 

As the self-diffusion coefficient is the time integral of this velocity correlation, 
this 1/t contribution should yield a logarithmically diverging contribution to 
the first-order correction to this transport coefficient. Actually, it turns out 
that this 1/t is just cancelled by another contribution of the type studied in 
the next section, so that no logarithmic divergence appears. It should be 
interesting to get the value of the coefficient of the (ln t) / t  2 term. The calcula- 
tions are so complicated that we cannot claim it does not vanish. However, 
the main point is that the time integral converges. 

The time variation of U2 is plotted on Fig. 3 for several values of a. 
The behavior of U2 for a large potential range also is indicated. For not too 
large t (t << a), the function is nearly zero. The maximum of U2 moves 
toward large t; it can be shown (by a saddle point method) that the function 
becomes concentrated around t ,-~ a 1/~ and that the height of the maximum is 
pt exp{(pt)2/2 - pa}. For very large times (t >> a), the function U2 decreases 
slowly, like a/t. The numerical values taken here for a (a ~< 10) and pt are 
likely not large enough to check this behavior. 

4. C A L C U L A T I O N  OF  ~s~(t) 

As explained in the introduction, part of the correction 3~b(t)is due to 
the difference of the collision times for hard points in the reference system and 
in the perturbed system. Let Barb(t) be this contribution to 3~b(t). We shall 
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Fig. 3. Plot of U2(t) vs. time for several values of the potential range a. It goes to zero 
like a/t. 

first explain how to compute this time delay by starting from the dynamics 
of the free point system. 

Let us consider a collision arising at time tl~ between particles 1 and k 
in the unperturbed hard point system. Furthermore, let ~r~(t) be the spatial 
shift of particle i due to the action of 8U between times 0 and t. This means 
that, if particle i is located at r~(t) at time tlk in the unperturbed system, it 
lies at r~(t) + ~q(t)  at the same instant in the perturbed system. Thus, the 
time delay for the collision (lk) is 

~tle = -[~r~(t)  - 3r~(t)]/(vl - v~) (30) 

where vl and v~ are the velocities of 1 and k before the collision. If  ~t~. > 0, 
the collision is delayed and during the interval [tl~, t~k + ~tz~] the velocity 
of particle 1 is vz in the perturbed system, although it was v~ in the reference 
system; on the contrary, if ~tlk < 0, the collision is in advance and during 
the interval [t~ + 3tlk, t~k] the velocity of particle 1 is v~ in the perturbed 
system, although it was v~ in the reference system. Let us denote by 3'v~(t) 
the velocity change due to this time delay; thus 

3'v~(t) ~ ~ S(t - tmn ) ~tmn Vmn ~a,~(t~.),c,l(o) (31) 
m C r ~  

where 

tmn = --[rm(0) -- rn(O)]/[vm(O) -- vn(0)] (32) 



222 A. Gervois and Y. Pomeau 

is the instant of the collision (mn) in the reference system. Due to the presence 
of the function 8(t - tin,), there could be some indeterminacy in (31), as 
%(0  is undefined at the instant of the collision (ran); in the present case, one 
must keep the value of % ( 0  just before the collision, as emphasized by the 
notation am(tff,). In order to get completely explicit formulas from (31), we 
have to express 3tm~, i.e., ~r(t). To first order in 7, one may suppose that 
3rm(t) is just the sum of the contributions due to the interaction 8U between 
m and any other particle between times 0 and t: 

8rm(t) = ~ 3r~)(t) (33) 
pCra 

As in the preceding case, we have transformed the problem into the 
evaluation of a perturbation in two-body dynamics. 

The quantity ~r~)(t) takes different forms, depending on whether m and 
p interact or not at t = 0 and at time t, although in any case they must interact 
between 0 and t. Simple considerations show that, when particles m and p 
have interacted between 0 and t, but do not interact at time zero, 3r~)(t) 
takes the form 

3r~)(t) = �89 - a)r Vmv(V~v -- 4~) 1/2 -- V,. v] 

[ ( x r  ( t -Tmv)e  T m . - t +  2a + Iv,~v[ 

2a 
x ~ ( t - T m p  [v-~vl)] (34a) 

where Trap (which must not be confused with the time t,~p defined previously) 
is the time after which particles m and p begins to interact 

T~p = (lrmp[ - a)/lv,,vl (34b) 

(see Fig. 4a). 
If, on the contrary, particles m andp interact at t = 0, but do not interact 

at time t (Fig. 4b), then 3r~)(t) takes the form 

3 r ~ ( t )  = �89 Vmzo(1)2mp -}- 4",'/) 112 - Vmv]e(a  - I rmvl )  

x r + Vmvt I - a)[t a sg Vmv -- (35) 

Inserting (33) into (30), we get 
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Fig. 4. Perturbation of the positions due to a small interaction for free point particles. 
(a) Particles do not interact at time zero. The deviation ~x(t) increases until there is no 
more interaction. The deviation is constant when the particles are no longer interacting 
(time t'). (b) Particles interact at time t = 0. After they have left their mutual potential, 
the deviation increases linearly. 

where 3r}Y~(t) is the sum of  the r ight-hand sides of  (34) and (35): 3r}S~(t) = 
~r <j> (t~ 3r (j~t,a + Once inserted into (31), this gives for the sought  quanti ty,  i , l k  ~) ~,2k )" 

i.e., 3'vl(t), 

3'vl(t)  = - Z Z 3~ 3(t -- tm~) [ Z ~r~mP'(t) - ~ 3r~'(t)] (36) 
h e m  rn Lp  ~ m  p r  J 

so that  the t ime correlat ion function 33~b(t) = @1 3'vl(t)) splits first into two 
parts ,  the first one arising f rom 3r<mP~(t), the second one f rom ~r~P~(t). Due to 
three summat ions  ( ~ ,  Y.m, and ~p), each of  these two parts  o f  3ar splits 
into seven contr ibut ions corresponding to part icular  combinat ions  of  indices. 
Using 

3r~mP~(t) = _ 3r~'~)(t) 

[which m a y  be verified at once f rom (34) and (35)] to reduce slightly the 
numbers  of  contr ibut ions,  we obtain 

~8~b(t) = 2(Vl + V3 + V6) + V2 + V4 + V5 + V7 (37) 
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with 

v~ = - ( U  - ])~v~ 

V~ = - ( N -  1)(v~ 

V~ = - ( N -  1)(N 

V~ = - ( N -  1)(N 

V~ = - ( N -  1)(N 

V~ = - ( N -  1)(N 

Vv = - ( N -  1)(N 

8~1<q-2~,~1~o > g(t - t12) 3r~2~(t))~p (38a) 

8~=~ti-~).~lto ) 3(t - t~2) 8@~( t ) ) tp  (38b) 

- 2)(vl 3~z~t~3>,~co) ~(t - t23) 3r(z3>(t))tp (38c) 

- 2)(v~ 3(t  - q2)  ~r(13)(t)[~al(t?2),al(o) - ~a2(ti-2).ax(O)])fp 
(38d) 

2)(vl ~(t - ~ ~ - tl~) r~ ( t ) [ ~ ; 2 ~ , ~ i ~ o ~ -  ~(~i-~,~(0~]>f~ 
(38e) 

- 2)(v~ ~(t - tza) 3~(ty9,~(o)[3r~>(t)  - 3r~(t)])~9 (38f) 

- 2)(N - 3)(v~ ~(t - t ~ )  ~ ( t ~ 9 , o ~ o ~ [ 3 r ~ ( t )  - ~r(a~>(t)])~ 
(38g) 

From now on the calculations are very similar to those in Section 3. The 
results are listed in Appendix E. 

As in Section 3, there is a term which behaves like t -1 for long times. It 
comes from the V5 contribution and it just cancels out the diverging part of 
U2. We may write 

[ ] 2"0 pa pa pa 
Barb(t) t-~---~ (2~r) 1/2 pt  + "0 ~ A '  In + B' (39) 

where A' and B '  are constants that we did not calculate explicitly. 

5. R E S U L T S  

Before going to the hard-rod case, we gather in this section all the results 
we have obtained so far. 

We recall that, for small perturbations, the correction to the velocity 
autocorrelation function is the sum of three terms [see Eq. (2)] 

3 

3~b(t) = ~ 3,~b(/) 
4 = 1  

each of them being itself a sum of several contributions [Eqs. (17), (22), and 
(37)]: 

6 

k = l  

3 

/ r  

33~b(t) = 2(1/1 + V3 + 176) + V2 + V~ + 115 + V7 
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Each correction Tk, Uk, Vk may be expressed as a sum of multidimensional 
integrals, which are listed in Appendices B, C, and E, respectively. 

For  small perturbation 7, no difference exists between the attractive 
and repulsive cases: The correction 3~b(t) is proportional to ~ and the first- 
order correction to the self-diffusion coefficient also exists. For  t--= 0, 
3~b(t) = 0 and after some oscillations, it decreases monotonically to zero. 
From Eqs. (20), (29), and (39), 

3~b(t) ~ n[pa/(pt)2][C in (pa/pt )  + D] (40) 

where C (=A + A' )  and D are constants. The C coefficient is obtained after 
a lengthy and tedious calculation. Some ~ndications are given in Appendix C. 
We did not carry out completely this calculation, the main point being that 
the time integral of b~b(t) still exists. 

Plots of ~-13~b(t) for several values of the potential range a are shown in 
Fig. 5. The dashed line represents the limit curve for a = oo and t << a. It 
departs from the curve for a = 5 at pt ~_ 1 (t /a ~_ 0.2). To test more precisely 
the asymptotic behavior for large a and a large range of values of pt (pt ~ 5 
or 10 for instance), it should be interesting to plot ~b(t) for a = 20, for 
instance. Unfortunately, the integration method becomes less precise as 
great relative compensations occur between the different contributions and 
no quantitative result may be obtained in this range of values of a and t, at 
least by using our numerical integration method. 

6. C O N N E C T I O N  W I T H  H A R D  R O D S - - T H E  V A N  DER W A A L S  GAS 

Now, we shall study to what extent the preceding results may be 
generalized to a gas of hard rods, each of length b (Nb  << L). As shown by 
Lebowitz et al., ~9'1~ when one evaluates averages of functions of the velocities 
only (velocity autocorrelation function, self-diffusion coefficient), the hard 
rod system is equivalent to a gas of hard points on a line of length L - Nb,  
the actual density being 

p ' =  p/(1 - pb) (41) 

and all the formulas are unchanged after the substitution p -+ p'. 
However, an important difference occurs for functions depending also 

on the positions; on a given space interval I between the center of two rods 
(l >/ b), there cannot be more than m intermediate rods--m being the greatest 
integer smaller than (l - b ) / b - - a l t h o u g h ,  for a gas of hard points, any 
number of particles in a finite interval is allowed. 

Using a method very similar to the one of the preceding sections, it is 
possible, at least in principle, to compute the first-order perturbation 8~b(t) 
in the case of hard rods of length b perturbed by a square well potential. For 
that purpose, the hard rod system should be first transformed into a hard point 
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Fig. 5. Plot of the whole perturbation 3~b(t) vs. time for several values of the potential 
range. 

system by picking a particular hard rod, say % then translating jb toward the 
right the j th  rod on the left of  ~, and translating j ' b  toward the left the j ' t h  
rod on its right. After this overall length contraction, the range of the square 
well between particles numbered, say j and j + k, becomes sup(0, a - k b )  

[sup(x, y) = x if x > y, and = y  otherwise] so that it becomes a kind of 
multibody potential. This explains why, although the computations are 
tractable in principle for the hard rod case, their complexity makes them 
discouraging. However, we have investigated the case where the range of the 
square well becomes much larger than the mean interparticular distance 
(a >> p-  1). In this limit, the number of particles lying on a length of order a 
becomes an almost nonfluctuating quantity. Thus, one may consider that, 
in this limit, the perturbed hard rod system behaves like a hard point gas 
perturbed by an interaction of range a' ~- a - ( r e ) b ,  ( r n )  being the mean 
number  of rods on a length a, i.e., <rn) = pa, so that a '  _~ a(1 - pb). 
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Finally, the per turba t ion  3r for  this hard  rod  case m a y  be derived 
f rom the fo rmula  of  the previous section th rough  the change 

p -+ p' = p/(1 - pb) (42a) 

a ---> a '  = a( l  - pb) (42b) 

Let  us now return to the s tudy of  8#(t) at  finite t imes in the limit a --> oo. 
We choose to s tudy the term T1, which is the simplest  one. Some modif icat ions 
occur  for  the other  contr ibut ions  but  the p r o o f  does not  differ essentially. 

We first replace the system of  N rods of  centers rl , . . . ,  ru at  t ime t = 0 
( - L / 2  < rl < ... < ru < L/2) by a system of  N p o i n t s  o f  posi t ions xl  .... , xN 
[ - L  - (N - 1)b/2 < x ,  < . . .<  xu < L - ( N -  1)b/2] through 

rz = x l  + � 8 9  1)b ..... rk = x ~  + � 8 9  1)b + ( k -  1)b...  

The interact ion 3U~j depends now on the number  p (0 ~< p ~< m) of  
intermediate  points  through 

~ U i j =  3Ui(r ) = ~ 7  when p ~< m and [ x ~ - x j [  ~< a - ( p +  1)b 

= 0 otherwise (43) 

Using a f ree-point  formal ism,  we rewrite 7"1 as 

--- N <v~ ~ ~,~,(t),,~,(o> 8U~j> 

N-p-I 

= (N - 1) t. ~ <v~ 2 Mr<P),-',,,+p+ 1 6.,(t),=,(o)> 
p=O i=l 

2 + (N  - 1) ! ~ <v, 2 8U[.~)_,_1 3~,(t).~,(o)> 
p = 0  t = p + 2  

(x~ < x2 < ..- < xN) 

We study only the first te rm;  similar a rguments  hold for  the second one. 
We express it explicitly as (we have set j = i + p + 1) 

~ N-~,-1,.+~ f_.o~ (L-(N-1)t, dx~ 
(N - 1), *--~1 J -  v'2h~ dv, ho(vi) dvy 

p=o "= o~ ~ ~0 L - ( N -  1)b 

x fL-(N-1)b dxj f~dO 
o L -  ( N -  1)b~ 2~r 

• exp{iO[e(x~ - xj + v,t - v /)  - E(x~ - xy)]} 

( f  f ~ dx~ exp[-iOe(x~- xz)] 
• "'" L - ( N - -  1)b 

x~<x.,.<x N [ " " 

x dvzho(vt) exp[iOe(x~ - x~ + vd - v/)] (44a) 
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Let us rewrite the last p roduc t  in the integral as 

t ,  [ F ( 0 , _ ~ : 5 )  - ] ,  1 
p !  [L  - (N - 0b] (N - 2 - p ) !  

tG(O, v,) tF(O, z, v,) IN-2-, 
• 1 + L - ( N  - 1)b - L - - - C N - : z  i ) b ]  

(44b) 

where 

j2f F(O, z, vO = t - 1  dx~ dv~ ho(v,) 

x exp{iO[E(x~ - x~ + v~t - vlt) - ~(x~ - x3]} 

1 + d ~ 
- ~ z + (1 - ei~162 - vO - r (45a) 

~ [L -- (N --1)b]12 ~ + O0 

6 ( 0 ,  vO = t - 1  dx~ dvl ho(vz) 
*' -[L - (N -1)b]12 ~ -co 

x (exp{iO[e(x,  - x ,  + vtt - vlt) - c(xi  - x3]} - 1) 

- ( 1  - cos O)lx(v 0 + / s i n  Ov, (45b) 

the functions r and t~(x) [ - -2r  were defined above,  and z = (x j  - xO/ t ;  

the funct ion F is concentra ted  a round  small values of  z (Iz[ ~< 2). 
N o w  formulas  (44)-(45) are exact but  very difficult to handle. Thus,  we 

restrict ourselves to large values of  a. 
In the case of  a hard-poin t  system (b = 0), taking the limit consists in 

(i) replacing the summat ion  Y.~= o by the summat ion  N-2 ~p=o as the terms for  
large p do not  change anything,  the main  contr ibut ions arising for  p ~ ~/m;  
and (ii) d ropping  the step funct ion E(a - (xj - x,)) = E(a/t - z); this implies 
tha t  t << a (finite times). 

The  r e summat ion  is then possible, and the produc t  

tG(O, . - 

is replaced by the exponential  

exp{p '  tG(  O, v0} = exp{  i tp ' (s in O)v, - (1 - cos O)p' ttL(v,)}. 

When b # 0 (hard rods), a - (p  + 1)b is still large for  the values of  the 

index which are of  interest (p ~ V'-m) and we can drop  the step function. 
When  p increases, the integrat ion interval becomes smaller, but  it corresponds  
to values of  p for which the contr ibut ion of  the integrand is negligible. 
Opera t ions  (i) and  (ii) are then allowed and the result still holds, i.e., one may  
obtain the results for  the hard  rod  system through  the substi tution listed in 
(42). 
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A P P E N D I X  A. A S Y M P T O T I C  B E H A V I O R  OF THE 
C O N T R I B U T I O N  FOR LARGE T I M E S  

For  large t, all the integrals which we have to consider can be rewrit ten 
a s  

f_..o~ ~2~ dO (1 J = dw eo~F(c~) ~ - cos O)~(i sin 0) B 
oo ~'0 

x exp[iptw sin 0 - pt(1 - cos 0)/~(@] (A.1) 

where F(o o is an even funct ion of  ~, independent  o f  t, and F(0) # 0; a, fl, 7' are 
positive or zero integers, and 7' + fl is even; otherwise J = 0 by the sym- 
met ry  (0, ~)  -+  ( -  0, -oJ) .  

Let  us rewrite the integrand as i B exp r co), where 

~b(oJ, 0) = V In oJ + In F(o~) + a In (1 - cos 0) + fi In sin 0 

+iotco sin 0 - pt(1 - cos 0)tz(oJ) (A.2) 

The  saddle-point  equat ions  read 

I F'(,..o) 
~b = ~ + + ipt sin 0 - pt(1 - cos O)t;(o 0 = 0 

~r [ a sin 0 cos 0 
o~ = 1 - cos 0 + fl s-]-ffOnO + iptw cos 0 - pt sin 0/x(~o) = 0 (A.3) 

i 

and the second-order  derivatives are 

d _ o t ( 1  - c o s  

Oa~ = ipt cos 0 -- pt(sin O)t~'(w) 0oJ 00 

00----- ~ = a -dO 1 Z - c &  d + fi N \s-l-n-O] - iptw sin 0 - p tcos  0/z(co) 

(1 .4)  

We shall denote  (~oo, 0o) a couple of  solutions of  (A.3); for  large t 

"r ~ for~n~dales ]DI 1/2 z exp ~VOo, 0o) (A.5) 

where D is the de te rminant  of  the second-order  derivative 

I a~r ~ ~2r162 e0 (A.6) 
D = 02~b/e 0 0 w  02~b/O02 

We shall consider several cases. 
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A1. = = l ~ = 0  

Equat ions  (A.3) reduce to 

7~co + F'(co)/F(co) + ipt sin 0 - pt(1 - cos 0)/Z(co) = 0 
ico cos 0 - sin 0/~(co) -- 0 

I f  coo is not  small, 0o is not  small either. It  is then easy to see, using 
(A.5)-(A.6), that  the contr ibut ion to J is exponentially decreasing with t; 
then it is surely negligible with respect to the inverse powers in which we are 
interested. Then,  we shall look for solutions to the saddle point  equations 
where coo and 0o are small. 

(i) If  7 = 0 ,  the only possible solution is COo = 0, 00 = 0 .  We get 
~b(COo, 0o) = In F(0) and 

D = ] F"(O)/F(O) ipt I 
ipt - ptt~(O) 

whence J ~t-~o t -1. 
(ii) if 7 # 0 (7 even), both  COo and Oo are small and to first order 

iCOo = 0o/Z(0), 7/COo + iptOo = 0 

whence 

Oo = + i[~,/ptt~(O)] 1~2, COo = + b't40)/pt] Ij2 

There are two symmetric saddle points. At  each saddle point  

exp [~b(0o, COo)] ~ [Tt~(O) /p t]mF(O)exp( -7 /2)  

D ~_ 202t 2 

and the contr ibut ion of  the saddle point  is ~ ( tp) -  ~- ~12 

A2. =+[3>0 

Again, if both  0o and coo are finite, the corresponding saddle points give 
a contr ibut ion decreasing exponential ly at large t. We come now to the other 
saddle points. 

(i) y = 0. F rom Eqs. (A.3), there is no saddle point  where coo and 0o are 
both  small or when coo is small and 0o finite. We investigate now the opposite 
situation, i.e., 0o small and coo finite. To  first order,  we have 

(2~ +/3)/00 + iptcoo = O, F'(coo)/F(coo) + iptOo = 0 

whence we obtain the implicit equat ion for  Wo 

F(~o)IF(~o) = (2,~ + ~)I~o 
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and 0o ~ i(2~ +/3)/tpwo is o f  order  t -z .  As F(w)  is an even function,  there are 
generally two symmetr ic  saddle points.  We have 

12a + t~\2~+B 
exp @(wo, Oo) ~ F(o~o) ( - ) = + e  {exp[_(2c~ + / 3 ) ] } ( ~ )  

,og~+e 2 6 

D ~ VO ) t "=(w2(d/dw)(f'/e)l~176176163 - ~ f f  + 1 } 

and  the asymptot ic  contr ibut ion o f  each saddle point  is like ~ ( to ) -  ~ -2~-e .  
(ii) V # 0. Start ing f rom Eqs. (A.3), it is easy to verify that  there are 

no saddle points  when 0a is finite and ~oo small. There  is again a solution for  
0o ~ t -~ and ~% small and  the above  results ar~ unchanged.  There  are 
supplementary  solutions when both  0o and o~o are small. 

T o  first order,  Eqs. (3) reduce to 

y/wo + iptOo = 0, (2~ + ~)/0o + iptwo - ;tOol*(O) -~ 0 (A.7) 

when 2~ + / 3  # y we get 0o, aJo ~ t-~/2. More  precisely 

0o = + [(2~ + /3  - y)/pt/,(O)] ~/~, to o = +_ iy[tz(O)/pt(2~ + /3  - y)]~,2 

and  

exp ~(~o~ Oo) ~ (pt) -~-(~ +'/2, D ~ - (p t )2 (2a  + fi - 7) /7 

whence the cont r ibut ion  at  the saddle is ~ t . . ~ ( t p ) - l - ~ - ( B + ~ ) l L  
When 2a + fl = Y, the first-order equat ions (A.7) are no longer sufficient. 

We rewrite Eqs. (A.3) more  carefully, keeping the second-order  terms:  

y + iptwoOo + ~oo2F"(O)/F(O) - ~ipt~ooOo 3 - �89 + . . . .  0 

2~ + fi + iptwoOo - ~(~ + 2/3)002 - ~iptooo 3 - ptOo2tz(O) 

+ ~ptOo4t,(O) - �89 + . . . .  0 

whence 0o << Wo and Oo~tpt~(O) + o~o2[F"(O)/F(O)] = 0, and 0o ~ (tp) -a/4 and 
~oo ~ (tp)-z/4; nevertheless, we recover the same asymptot ic  behavior  as 
above  

The  results o f  this discussion are given in Table  I. 

Remark .  We have concentra ted our  a t tent ion upon  the contr ibut ion to 
8~b(t) behaving like t -  ~ for  large times, as they could give a logari thmical ly 
divergent contr ibut ion to the diffusion coefficient. As the various contr ibu-  
tions to this t - z  term jus t  cancel, the knowledge of  the asympto t ic  behavior  
of  8~b(t) requires an expansion to the next order  in the saddle po in t  method.  
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Table I. Asymptotic Behavior for Large Times of Each Saddle Point 
for Integrals Given by Eq. (A1) 

Type of integrand 
(values of ~,/3, 7) 

Nature of the 
saddle points 

Asymptotic behavior 
of ~" for each saddle 
point when t -+ co 

. = ~ = o , ~ , = o  

~ = ~ = 0 , 7 ~ 0  

a+/~>O, 7=O 

,~+/~ > 0 , 7 # 0  '~ 

(1) o~o, 0o finite Exponential decreasing 
(2) o~o = O, 0o = 0 (pt) -1 

(1) oJo, 0o finite Exponential decreasing 
(2) oJo, Oo ,,~ t - i t2 (pt)  -1-~j2 

(1) oJ0, 0o finite Exponential decreasing 
(2) o~o finite, Oo ,.~ t -1 (pt)  - ~-2"-~  

(1) oJo, 0o finite Exponential decreasing 
(2) OJo finite, 0o ~ t -1 (pt) -~-2~-a 
(3a) 2~ + /3 # V: 

Oj 0 eq t - 1 1 2  O0 ~ t -112  

(3b) 2~ + /3 = V: (Pt)-~-=-c~+')/2 
w o ,~  t - l / 4 ,  0 o ~ t-zl~ 

a If a = /3 = V = 1, then J ~ t -  ~ (cf. Appendix A). 

This should yield very intricate calculations, and we thought  that  it was 
sufficient to notice that, due to the cancellation of  the t -  1 terms [Eq. (40)] 

8 ~ ( t )  ~_ ( a / t 2 ) [ C l n  ( a f t )  + D ]  

Of course, it is possible that  C just  vanishes, due to some cancellation. 
However,  the main point  here is that/5~b(t) decreases at least as rapidly as (and 
perhaps more  rapidly than) (In t ) / t  2 at t - +  ~ ,  so that  its time integral (i.e., 
the first per turbat ion in the diffusion coefficient) is well definite. 

There are three contr ibut ions to 3~b(t) decreasing like t - 1 : U 2  (Section 3) 
and V5 and Vv (Section 4). For  U2, there is only one saddle point, so no com- 
pensation appears and it surely behaves like t-1. For  V~, when integrating 
over 0, we see that  it behaves like t -  1 and exactly Cancels the divergent par t  
of U2. 

For large times, V7 behaves like 

dw~oh0(w) l" d O .  .2 .  �9 Vv  ~ . . . .  ~ [p t  ) t s l n  0(1 - cos 0) 

• exp[ ip to~  sin 0 - pt(1 - cos 0)t~(~o)] 

By integrating over the variable 0, then looking for small oJ, we find that  
the t -1  terms vanish. I t  is a little complicated to prove this point  in this way 
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a n d  we prefer  to show tha t  the  in tegra l  

f) l ira VT(t)e- a 
E ~ 0  

exists, i.e., t ha t  

V~(~) - C 
+ co 

d - o o  

exists for  smal l  E. 

wi th  

T h u s  

r 2~ dO / (sin 0)(1 - cos 0) 
do) who(o))Jo ~ [e + Ot~(o))(1 - cos 0) - ipo) sin 0] a 

Set t ing u = tan(0/2) ,  we get 

8 f  +~ f + ~ iu a 
dco who(o)) du {uS[" + 2p/~(@] - 2ipo)u + e} ~ 

- o r )  

8 f  +| do) o)ho(o)) f + ~  iduu  3 
= _ ~ [e + 2p/z(o))] 3 _ o~ [ u~ - 2iA(o))u + B2(w)] ~ 

A(o)) - po)/[, + 2p~(o))], B~(o)) - , / [ ,  + 2p~(o))] 

f + ~ do) o)ho( w) 
VT(e) = - 1 6  - =  [e + 2Ot~(o))la 

x Res idue  [u 2 _ 2iA(o)) - B2(o))] a u =~a(~) + itnz(co) + B2(co)ll l  = 

3 (+~ p,o)~ho(o)) 
= - ~ j _ =  do) [,5 + 2p,~(o)) + t~o)~]~/~ 

Set t ing e = 0 in  the  i n t eg rand ,  we get a n  i n d e t e r m i n a t e  resul t .  Def in ing  

the new  i n t e g r a t i o n  va r i ab le  x by  

we get 

which  exists. 

3 ho(O) (+~ dxx~ 
VT(O ,-:o 7~ o~(O)j_~ (1 + x~) 5~ 

APPENDIX B 

As an  example ,  we ca lcula te  here  the c o n t r i b u t i o n  

7"2 = � 8 9  1 ) ( N -  2)@1218U2a - (8U2353 3o1.~,o1~o,5 
The  b e g i n n i n g  o f  the ca l cu la t ion  has  been  sketched in  the  text. We  
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rewrite (19) as 

1 f + ~  Jor2~dO ~ r~ = ,; & l  Vdho(Vl) ] (or) ~ 
- o o  

x exp{itp(sin O)vl - tp(1 - cos O)~(v~)} 

f f+o~ (a [x--  Yl)41,o(Y) 4a,o(X) (B.I) x d x d y ,  - i -  
- o 0  

where we have set x = (rl - r2)/t, y = (r~ - r3)/t, the exponential arises in a 
way similar to that  of  Eq. (12), and 

1 + ~l.o(x) = {exp[-iOffx)]} dr2 ho(v2)exp[i&(x + vl - v2)] 
oo 

cos 0 - 1 
= 1 + 2 + / ( s i n  0) Erf(x + v~) 

is in 0 
2 s g x +  (1 - c o s 0 )  s g x E r f ( x +  v~) 

or, in an alternative manner  

~l,o(X) = [(1 - cos 0) sg x + i sin 0][Erf(x + vl) - �89 sg x] (B.2) 

where sg x = x/[x I and Eft(x)  is defined in Eq. ( l lc) .  
Easy, but  tedious manipulations give the final result 

1 ~ +~ ;2~dO 
T2 = ~ ~)_ ~o dr1 v12ho(vl)Jo ~ (pt) 2 

x exp{itp(sin O)v~ - tp(1 - cos O)/~(v~)} 

x {(1 - c o s  0)2[fffvl) +f2(vl) + fa(vl) + f l ( - v l )  + f 2 ( - v l )  + f a ( - v l )  
+ / ( s i n  0)(1 - cos O)[fl(vl) + f2(vl) + fa(vl) - f l ( - v l )  - f2(-v l )  - f a ( - v l ]  

- (1 - c o s  O)[fl(vl) + 2fa(vl) + f l ( - v l )  + 2fa(+vl)]} (B.3) 

with 

(.sit 
f2(v~):Jo dx[Er f ( x+v~)  ~ ] [ f f ( x + v , - t ) - / x ( v z ) ]  

f.a/t 
fa(vl) = Jo d x [ E r f ( x + v , ) - ~ ] ( t - x  ) 

and a supplementary integration, over the angle O, can be performed by using 
the relation 

exp{tto(sm O)x - too  - cos O)tz(x)} 

= Io(pt[lx2(x) - x2] 1/2) exp[-ptt~(x)] 



Dynamical Perturbation for Classical Fluids: A Solvable Model  235 

Here, Io denotes the modified Bessel function of index 0. The integrand 
is now a rea l  function in terms of vl and x only. It is this latter form which 
we took up for numerical calculations. 

Let us make a few more remarks: 

(i) Consider the derivative of T~(t)  for t = 0. The step function 
E(a/t - Ix  - y[) may be replaced by one, but as t appears at least under the 
form (pt)  2 exp{pt(...)} in the integrand, the slope is zero at the origin. 

(ii) When a --> o% again ~(a/t  - Ix  - y])  can be replaced by one and 7"2 
goes to a limit independent of a. 

(iii) When a = 0, T2 = 0. 

Let us now list the five remaining contributions. The calculation of 7"6 
is very much similar to that of T2. We get 

l.+| ~ ~2~ dO 
r~ = - ~-= d~Oho~(o0J ~ ~(pt)3(1 - cos 0) 

x exp{ i tp ( s in  O)oJ - too  - cos 0)ff(~o)} 

x {(I - cos 0)2[f1(~o) + f2(o0 +fa(co) + f l ( - w )  + f z ( - w )  + f 3 ( -  oJ)] 

+ / ( s in  0)(1 - cos O)[ f l (w)  + f z ( o  0 +fa(w) - f 1 ( -  o0 - f 2 ( -  co) - f 3 ( -  @] 

(1 cos 0)[fl(w) + 2fa(w) +f~( -oo)  + 2fa(-@]} (B.4a) 

with the same definitions as above for the functions f l ,  y~, andfa .  The other 
terms are simple; we get 

t "2~ dO 

x exp{ i tp ( s in  O)vl - tp(1 - cos O)tz(v,)} 

+i(sinO)[tz(v,+t)- /z@, - t)]} (B.4b) 

r 2'~ dO 

x exp{ i tp ( s in  O)co - t0(1 - cos 0)ff(oJ)} 

x {(1-cosS)[ho(~+ t)+ ho(a,-t)-2ho(a,)] 
+ i ( s i n O , [ h o ( ~ O + t ) -  ho(oJ - t ) ] )  (B.4c) 
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f_+i f? 0 T~ = - ~  d,~ ho~(~) ~ (pt)~(] - cos O) 

• exp{itp(sin O)w - tp(1 - cos O)tz(oO} 

+ /(sin O)[F(c~ + t ) -  /z(~~ - t ) ] t  

f +  ~ r ~ dO Ts = 2~7 -oo d~o ho(o 0 Jo ~ (Pt)2(1 - cos 0) 

• exp{itp(sin 0)~ - tp(1 - cos O)/~(oJ)} 
• {(1 - cos 0)b~(~)  + g~(oO + g , ( - ~ )  + g ~ ( - ~ ) ]  

+ /(sin 0)[g~(o 0 + g2(~o) - gl(-eo) - g2(-oJ)] 
- [g~(w) + g~(-w)]} 

with 

gl('~) = fo ~ 

__ (~/$ 
g~(oO 

- - . t  O 

(BAd) 

dy[Er f (~~  + Y )  - 2 ] I h o ( w  + Y + t )  - ho(~~ + Y - t )  ] 

In all the above expressions, ho(x),/~(x), and Eft(x) denote the functions 
defined by Eqs. (lO) and (l l) .  

A P P E N D I X  C. C A L C U L A T I O N  OF Uz A N D  FINAL 
EXPRESSION FOR ~2r 

C1. Calculat ion of  Uz 

We start from 

U1 = (N - 1)(v~ ~v~ ~~ ~,~,~1~o~) 

--- p dr1 dr2 vlho(vl)ho(v2) d(rz - r2) 
- o o  ~ - c o  

(2~ dO 
x Jo ~ exp{iO[e(rl - r2 + vzt - v2t) - e(rl - r2)])By? ~ 

f ..o~ )fo ' dr;T x 1--[ dr; ho(v; 
l~>3 co 

x exp{/O[E(rl - r~ + vlt  - v;t) - E(rl - rz)]} 
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= v lho(v l )  dv l  ho(v2) dV2jo | ~ (p t )  
- o o  - c o  

• exp{iO[e(rl  - r2 + v l t  - v z t )  - E(rl - r2)]} 

• exp{ i tp ( s in  0)vl  - tp(1 - cos O)ff(vl)} 

x 8v , vl  - v2 d (r l  - r2) (C.1) 
,J - L I ~  t 

where the second exponential is obtained by the same arguments  as in Appen-  
dix B and 

8 v (  rl  - ' v~  - v2)  = 8v~ 2' 

is given in (24)-(28). - 
Setting now x = (rl  - r2)/ t  and co = vz - v2, we rewrite U1 as 

f [~o 12~ dO 

co Jo 

x e x p [ / p t v l  s i n  0 - p t ( l  - c o s  O ) / , ( v l ) ]  ;+o 
x d x  exp{iO[E(x + co) - fix)]} dco ho(vl  - c~) B y ( x # )  

For  the present, we shall be concerned with the last two integrations. 
When the particle 1 is not  in the potential o f  particle 2 for t = 0 (i.e., when 
Ixl > a / t )  it can be rewritten, using Eq. (22), as 

1 [,+o~ + |  

x ~ Icot - l x l  + ~ l x l  - tcol - 7 + t ( c o ~ a - w ) * ' 2 /  

x exp[iOE(x + co) - i & ( x ) ]  

o r  If[ (.+air 
dco [ (co  2 - 4r / )  ~'2 - a ~ l J _ <  dx 

( a 2aco ,," ~) 
x ~ - c o  - x - 7 + t(co~ - - 4 ~ ) ~ ' q ~  ~ + x + 

x [e'O~(x+~ho(vl - co) - e-~ee~~162176 + co)] 

where we have restricted the integration domain to co ) 0 by appropriate  
changes o f  variables. Expressing the step function explicitly and setting z = 
co + x, we get 
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[ , [4~ + (2a/t)2] 112 

- / do., [(092 _ 4~)~ ,2  _ 091 
2, ,  o 

f 
o~ - a f t  

x d z  [e~~ - 09) - e-~~176 + 09)] 
- a l t  

i ~ + ~ f~4,~+(2an,2j~,2 d09 [(092 - 4~)l/2 - ~] ;_c211~~ 

x [ei~ - o~) - e- t~176 + 09)] (C.2) 

Except when (a / t )  2 <~ [7[ and for small velocities (r 2 ,,, 4171), we get 

sg 09(09~ - 47) 1/2 - 09 ~ -(27/09 ) 

To first order in 7, the first contribution to U1 simplifies to 

(~alt d09 f~ 
- 7  - -  dz  [ei~ - 09) - e -~~176 + 09)] 

w 0 09 - alt 

g~o d09 g a i t  

- 7 f  - 2 |  d~ [~~ - ~,) - ~-~o~o~,-~ho(,~ + 09)] 
2alt  .J - alt  

air 

= - , 1  d09 [ho(Vl - 09) - & ( v l  + 09)] 
" 0  

( ~  ~'09 [ho(V~ - 09) - ho(v,.  + 09)] 
t Jalt 09 

- n - -  09 - { ( c o s  O)[ho(V~ - 09) - ho(V~ + 09)] 
air 09 

+ /(sin O)[ho(v~ + 09) + ho(v~ - co)l} 

 (cos 09)-  + 09 ] 
d 2a/ t  09 

+ / ( s i n  O)[h0(v~ + 09) + ho(v~ - w)]} 

and for the second contribution, using definition (26), we get [a/t > (417[) ~/2] 

d09 [(09~ + 4 & / ~  - 091 
jt 

i o x dz {(cos 0)[ho(09 - vl) - ho(cO + vl)] + / ( s i n  O) 
sup(a / t  , co - a/ t)  

x [ho(v~ + 09) + ho(V~ - 09)]} 

f ~ f f f  + alt + �89 d09 [(092 + 4.q)1/2 _ w] dz  {(cos O)[ho(w - vl) 
air 

- ho(v~ + @] - / ( s i n  0)[ho(09 - vz) + ho(w + vt)]} 
g a i t  

+ �89 d09 [(092 + 47),/2 _ 09] 

l 
eo+air  

x d z  { ( c o s  0)[ho(09 - v O  - ho(09 + v O ]  
alt 

- / ( s i n  0)[ho(09 - vz) + ho(09 + v~)]} (C.3) 
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Except for long times and small velocities again, we may replace 
sg ~o(c~ 2 + 4~) 1/2 - co by 2~/~o and the integration limit (4t,)]) 1/2 by 0. We 
obtain the final result for U1 : 

u1 = -~-  ( + ~ dv~ vlho(vl) 
23_| 

f ~'~ dO 
x ~ ot exp{iotvl sin 0 - pt(1 - cos 0)/x(vi)} 

f (.air x (1 - cos 0)j~ d~  [ho(~O - / ) 1 )  - h0(~ +/)1)]  

~ alt 
+ /(sin O) &o [ho(o, - vl) + ho(oJ + v~)] 

~ 0  

a f o  ~ [ho(  - vl) - h0(  +/)1)1 + ( 1 - - c o s 0 )  7 It oJ 

ia " fo ~ d~ } + 7 (sin O) - -  [ho(w - -  vl) + ho(w + vl)] 
�9 tt o)  

We have not justified here the way we have "linearized" with respect to 
to get the results. This point is considered both in the text and in Appendix D. 

C2. Limiting Cases (w i th  Linearized Formulas) 

(i) Long-time behavior. From the results of Appendix A quoted in 
Table I, the predominant contribution to U1 at large times is 

Ul -t~oo _~ f + oo dvl vlho(v~) 

(2~ dO 
x Jo ~ ipt(sin O) exp[iptv~ sin 0 - pt(1 - cos 0)~(vl)] 

{/? x doJ [ h o ( o o  - -  / )1)  - ~  ho(r + / ) 1 ) ]  

~ - ~ p a f f ~  dr1 vlho(vz) 

.2~ dO 
x Jo ~ / ( s i n  0) exp[iptvl 

f In pa • -2ho( / )~) - -37-  

+ FP f j  __d~ [h~176 

+ h0(~ + v~)]j~ 

sin 0 - pt(1 - cos O)/L(vl)] 

+ 2ho(vO 

+ v~) + h0(~o - v~)]'~ 
) 
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where the FP f symbol denotes the "fini te p a r t "  of  the integral. This leads 

to an asymptot ic  behavior  for  O"1 of  the form 

[pa/(ot)~][A~ In (oa/pt) + B~] (A~, B~ constants) 

which is different f rom the behavior encountered in Section 3. As an example, 
let us calculate A~. We have 

pa f +oo A1 ~ ~ 2~pa -o~ dr1 vlho~(Vl) 

f ]~  /(sin 0) exp[ipt(sin O)vl - pt(1 cos 0)/z(vl)] 
dO 

x 

~ + oo 7)12 

= -2~pa  dr1 [/x~(vl) _ v,2],/2 
- c o  

x ho2(Vl)Io'(pt[/x2(vl) - v12] 1/2) e x p [ -  pttx(vl)] 

where Io(x) is the modified Bessel function and Io'(X) is its derivative; we 
calculate the above integral near v, = 0 using the asymptot ic  expansion 
Io(x) ~ [1/(27rx) 1/2] exp x and rewrite 

Aipa --2~pa -ll2 ( + ~ [ ptvz ~ ] 
(pt) ~ ~ [2rr/z(0)]a/a (pt) .._o~ dv~ v~ ~ e x p [ - 2 ~  ] 

whence A~ ~ - ~/fir. 
(ii) In the opposite limit t --+ 0, we get 

u z ~  
t = 0  

- , 7  dr1 vlho(vO 
c o  

x Jo ~ ot (1 - cos 0) doJ [ho(~O - vz) - ho(oJ + vl)] 
0 

+ /(sin O) dco [ho(w - v~) + ho(co + v~)] 
0 

= - 2~ dv~ vlho(v~) Erf(v~) ot 

whence Ull,=o = 0 and (dU~/dt)[t=o = -~/V'~ ' ,  which does not  depend on a. 
(iii) When a = O, then U~ = O, for  obvious reasons, al though when 

U1 ~ - ~) dvl vlho(vl) 

f ~ dO 
x ~ pt exp[ipt(sin O)vl - pt(1 - cos 0)tz(vl)] 

• [2(1 - cos 0) Erf(vl)  + i sin 0] 

which does not  depend on a. 
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C3. Expression of the T w o  Remaining Terms 

Once linearized, the expression for U3 is 

u 3  = - ~. j _  ~ d .  h o ( - )  

f ~  dO 2 " 0)~ ,ot(1 cos O)/z(~)] x ~ (pt) exp[ipt (sm - - 

x ( f ] l t d v .  [ v \ 

x {(1 - cos O)S[2v'V/2 + t~(z2) + ~(z , )  - ~(z l )  - ~(za)] 

+ (i sin 0)212vV'2 + I~(z2) + ~(z , )  - Ix(zz) - /x(z3)] 

+ 2i(sin 0)(1 - cos O)[/x(z2) +/x(za) - ~(z~) -/z(zO]} 

+ -d ho 

x ( ( 1 - c o s  O ) S [ ~ +  2~(@2 + coV'2) 

[(5 ) + 2i(sin 0)(1 - cos O) /z + m~r 

- ~ ( ~ -  ~/~)+ .(z~)+ t4z4)]}) 

where tz(x) [=2~(x)  = 2h0(x) + 2x Eft(x)] is again the frequency collision 
and 

v ) ) z l =  + ~ + c o  , z 2 =  - ~ + o ~  

z s =  + ~ -  ~o , z4 = 2 ~o 
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The last term U2 reads 

v ~ = - ~  -~o do~ o N t ) t  

x exp[iptw sin 0 - pt(1 - cos O)~(m)]((1 - cos O ) f ~  du 
It U 

- ho(~O)ho(O~ + u) - ho(o~)ho(O~ - u) ]  

~o(~- ~)+ ~o~)~o(~- ~ -  ~o(~o~ § ~ 

fo~Ul ( ~ ) ( o )  + c o s O  u ho ~o + ho o~ + - { -  u 

-~o(~+ti~o(~§247 

;~o ~o ul~o( ~§ 
~o(~§247 

+~o(~ ~)~o(~ u t ) l }  
The third term U2 is responsible for the t -  1 behavior for long times. The 

integral behaves like 

"~ - 2",Tpa doJ ho(~)  

j .2~ dO 
x ~ cos 0 exp[ipt~o sin 0 - pt(1 - cos O)/x(o~)] 

0 

fo x du[ho(,o + u) + ho(o) - u)] 

The integrand becomes concentrated a round  co = 0 for long times, 
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whence we obtain for the asymptotic behavior 

",  - 2~Tpa dco ho(co)Io(pt[t*~(co) - oJ2]U2)e-P'~('~ - 2r~ pa 
U2 t-. | | (2~r) *12 p t  

As the integrand of Uz and Ua are exponentially decreasing when t --, 0 
or a --> co, we can ensure that 

dUa  ~= dU2  = 0 
U2it=o = Ua[,=o = - d T  o = d t  t=o 

and that the limiting function for large a is z.ero. 

A P P E N D I X  D. J U S T I F I C A T I O N  OF THE L INEARIZATION 

In this appendix, we shall consider in more detail the way in which we 
get final contributions which are explicitly linear in ~. Indeed, by inspection 
of (C.2) and (C.3), it appears at once that the ~ dependence of U1 is quite 
complicated so that it is not completely obvious to derive from (C.2) a 
closed expression formally linear in ~, such as the one given in (C.4). The 
following considerations will be applied directly to U1, as its computation is 
carried out explicitly in Appendix C. Of course, they can be easily extended 
to any contribution to 8r 

The final expression (C.4) is derived after three simplifications: 
(i) linearization of the limit of integration [ (2a / t )  2 + 4~]u2; (ii) replacement 
of (0) 2 + 4r/) ~/2 - Io)l by + 2~7/Ico[; (iii) replacement of (41~7[) ~l~ by 0. 

Some explanations for the latter case were given in Section 3. Operations 
(i), (ii), and (iii) are surely valid when we deal with finite times only; we shall 
examine the three operations successively. 

( i)  L i n e a r i z a t i o n  o f  [ (2a / t )  2 + 4r/]l/L By neglecting ~ in the integration 
bound of (C.2), we make an error of  order 

2a/t 

- -  - -  d z  f[48+(2a/t)2] 112d09 [(co2 4~]) l/Z (~o] [inf(c~176162 - a/, 

x [e~~ --  co) - -  e-~~ + w)] 

for which a rough upper bound is 
2a/t fat t  

f~,~+(2~/o211/2 dco [(co 2 + 41r]]) 1/2 - co] d z  [ho(vl + o)) + ho(v l  - co)] 
:-air 

f 2alt 
~< 2 do) [(o)~ + 4lV]) "~ - co] 

d[4r/+ (2a/t)2] 112 �9 

~ + 4~ - = O(~/2) 
a 

as a / t  is finite. 
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where  n >/ 
correct ion 

(ii, iii) Linearization o f  (~2 + 47 _ r and Dropping o f  the Condition 
w2 > 417[ [for expression (C.3)]. We carry out  the p roof  for (m2 + 47)~/2 _ oJ; 
only small modifications are necessary for case (iii). Problems occur only 
because of  small velocities (r 2 ~ 4171). For  ~o >/ a/t, the corrections to the 
l inearization with respect to 7 a re  obviously of  order  n2 and so we shall not  
consider them. When oJ I> a/t, the r ight-hand side of  (C.2) reduces to 

�89 ( ~ - a , t  
,o d~o [(r 2 - 4n) 1/2 - r dz [h0(v~ - ~) - ho(v~ + ~o)] 

1 (air 
= 2Jo doJ ~o2[(w 2 - 4~) '/= - r ho(v, - r -oJ ho(v, + ~) 

More  generally, we shall prove that  integrals of  the form 

o d ~  o~nr  - 4 n )  ~,~ - oq  

1, ~b(0) ~ 0, 0% can be linearized. The absolute magnitude of  the 

fo r ~"r162 2 - 47)zJ2 _ + (27/~o)1 (.o 

is smaller than 

sup oJn[oJ - (27/00 - (o~ 2 - 47) 1/2] 

which is of  order  72 when n > 1. If  n = 1, the integration can be performed 
and we find that  the neglected term is of order 73/2 . 

We must  keep in mind that,  when we consider the self-diffusion co- 
efficient, i.e., the time integral of  3~b(t), a careful inspection of  the long-time 
(a/t ~ 171 ~/~) and very long-time (a/t << [711/2) 'behavior is necessary. Indeed, 
it is possible that,  for instance, a very slow decrease of  the velocity correlat ion 
at times much larger than alTI- 1/2 yields ultimately a correction to the time 
integral of  this quanti ty of  order  (or even larger than) 7. 

A P P E N D I X  E. LIST OF THE C O N T R I B U T I O N S  TO 83~b(t) 

For  V1, V3, and V6 we have 

21"1 = 27pa dr1 vlho(vl) 
- o o  

x ~ exp[iot(sin O)v~ - ot(1 - cos O)ff(v~)] 

f~dv 
x v [h o (v l  - v)  - h o ( v l  + v) 
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2Va = -2~?pa f + f  doJ dho(w) 

x (2~ dO Jo ~ exp[i~ O)co - ot(1 - cos  O)tx(w)] 

( x c o s  0 v [ho(~O - v )  - ho(o~ + v ) ]  
It 

+ / s i n  0 (~176 d v [ho(~O _ v) + ho(w + v)] t 
J alt I) 

2V6 = 2~pa de) ho(cU) 
o o  

;~ = dO 
x ~ ot exp[iot(sin O)cu - pt(1 - cos  0)/x(w)] 

x f ~  v ~ h o ( ~ ) { 2 ( 1 -  c~ O)2 

- 2(1 - cos  0) + 2 i ( s in  0)(1 - cos  0) 

X [ E r f ( ~ - ~ - o ~ / 2 ) -  E r f ( ~ - - ~  + o ) ~ / 2 ) ] }  

V2 = -pav  dv~ vlho(vl) 
ct~ 

f ]~ dO 
x ~ ot exp[iptv~ sin 0 - pt(1 - cos  O)/~(v~)] 

{ f ~  dv [ho(v~ - v) - ho(v~ + v)] x -~ 
It 

• [(1 - cos  0)2t@1) - i(1 - cos  0)(s in  O)vl] 

f, ~176 + ~ [ho(v~ - v) + ho(v~ + v)] 
air 

x [(i s in  0)2vl - / ( s i n  0)(1 - cos  O)/~(vl)]~ 
-q ( + ~  J 

v ~  = - ~  j_  ~ dv~ V~ho(V~) 

(2~ dO 
x do ~ (pt)~ exp[iptvz sin 0 - pt(l - cos  0)/x(vl)] 

x {(1 - cos  O)~[F(vl) - F( -v l )]  
+ / (s in  0)(1 - cos  O)[F(v 0 + F(-vz)]  
- (1 - cos  O)[F(v 0 + G(va) - F ( - v l )  - 6 ( - v l ) ] }  
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with 

- ~ ~jt d v  [ v \ [ v l v ~ / ~ _  v2r f ~ d y ( z l _  y)f(y)] g(vl) )o ~ h~ t~--~) 

f |  i v \  
+ ~;~-~hot~--~) [ ~  l y n x / 2 -  ~ ( f l , ] -  ~ d y ( z l - y ) f ( y ) ]  

(z~'tdv { v '  i __f~ - y ) f ( y ) ]  

f2 | dv .  [ v \ a 2 
+ - _ ~, dy (zl - y) f(y)  

(*' ayf(y)] t a*2 J 
f ( y )  - ho(y) + ~ Erf(y) 

the variables zi (i = 1-4), ~, and/~ are given by 

za = (a/t + v/2 + vl)V'2, 

z~ = (a/t + v/2 - vl)X/-2, 

= (vl - v/2)V'-2, 

z z  = ( a / t  - v / 2  + v l ) x / - 2  

z~ = ( a / t  - v / 2  - v l ) x / 2  

= (v~ + v / 2 ) V ~  

and the functions ho(x), Eft(x),  and qS(x) = / , ( x ) / 2  are again those of  Eqs. 
(10) and  (11). 

For  V5 we have 

f !  ~ ~ = - 2  d~ 
o= ff ~ dO 

(002 exp[iptoJ sin 0 - ot(1 - cos 0)/,(w)] 

x {4(1 - cos O)2Fl(oJ) - 2(i sin O)2F2(w) 
+ /(sin 0)(1 - cos 0)[4Ft(w) - 2F2(co)] - 4(1 - cos O)F4(w) 
+ 2/(sin 0)Fs(oJ)} 

with 

F 2 ( . , )  - ~ J~ - ~  ~ o  d x  x + (o, - x )ho( , , ,  - x)ho(o~ 

2a ffu~<alt.u - air) 
x ( o J + u - x ) + 7  It " d x ( c o - x ) h o ( o J - x )  

x ho(o~ + u - x)(o~ + u - x )  

s u ~ o O z / t  , ~  - cztt) 

"~ h i - - X )  
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x ho(co - X)ho(co + u - x)(~o + u - x )  

2a f.sup(a/t.~,-,~/t~ 
+ - -  | d x  (co - X)ho(co - x )  

I .: a/t 

• ho(co + u - x)(~o + u - x )  

] x ho(co - X)ho(co + u - x)(co + u - x )  

and F~(co) and F4(co) are obtained by replacing the factor (co + u - x) by 
ho(co) + (m + u - x) Erf  co in F2(co) and Fs(co), respectively. 

For  large t and small co, Fs(co) reads 

f0 Fs(co) t~= (aco/t) du ho~(u/v/~2) = aco/[(2rr)l/2t2] 
~- '~0  

and 

2pa ( ~~ [.2~ dO 
V~ t~o~ (27r) ~/2 J _  o~ &o o)J0 ~ pt(i sin 0) 

x exp[ipt(sin O)co - pt(1 - cos 0)/z(@] 

2oa ( + = .  co2pt [ _ o t w  2 ] 
"~ (2--@)z/2 J_ o~ aco ~(0)[2~rpt/z(0)]z/2 exp[  2/z(0)] 

2 pa 
(27r) 1/2 pt 

and the diverging term is exactly cancelled by the diverging term of  U2. 
For  V7 we have 

4 (  += v7 = dco ho(co) 
- -  ~ - o o  

f f ~  (pt) 3 exp[ipt(sin O)co - pt(1 - cos 0)/~(w)] 
dO • 

x {2(1 - cos 0)3[Fl(w) + 2F2(co)] 

- 2i(sin 0)(1 - cos 0)~[Fl(co) + 2F2(w)] 

- 4(1 - cos 0)2[F~(co) + g2(co) - G2(w)] 

+ 2i(sin 0)(1 - cos 0)[Fl(co) - G~(co)]} 
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with 

l f: d ff Fl(~o) = ~ - ~  d x  ho(cO + v - x)ho(eO - x)(co + v - x )  

x - - am d z  2a  d z  

-,(x-ate 
t / ,, sup(a/t,~ -,~/t) 

l & (io,,o,o o,,, 
2 - ~ j _  | dxho(cO - v + x)ho(~o + x)(oJ + v - x )  

if0 ( t )  GI(~  - - 2 V~ j o  , ix  ho(o~ + X)ho(,O - v + x)(~o - v + x ) ~  v - 

- -  sup(air,u-a/t) d z  - - u 
f~' (z t ) e ( x  sup(  t , - t ) ) }  

and similar formulas for F2(w) and G2(w) by simply replacing (w + v - x) 
by h0(w) + (oJ + v - x) Erf co in Fl(oJ) and Gl(eo), respectively. 

The only remaining diverging term arises from the (i sin 0)(1 - cos 0), 
but as explained in Appendix A, compensations appear and actually the term 
V7 behaves like t-2 instead of t-1. 
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