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Dynamical Perturbation for
Classical Fluids: A Solvable
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We investigate on a one-dimensional model the perturbation to the time-
dependent correlations in a classical fluid when a small interaction is added
to a hard core. Various formulas have already been proposed for this
correction. We verify on this model, for which everything can be calculated
explicitly, that the expressions proposed by Frisch and Berne yield strongly
divergent time integrals for the diffusion coefficient. On the contrary, when
all corrections are accounted for, the correction to the velocity time
correlation is shown to decay like (In#)/¢2 at large times, yielding a finite
first-order correction to the diffusion coefficient. The extension of this
calculation to a gas of hard rods in the case of a perturbation with an
infinite range is discussed.

KEY WORDS: Nonequilibrium statistical mechanics; hard point one-
dimensional gas; small perturbation; long time behavior.

1. INTRODUCTION AND PRELIMINARIES

Many equilibrium properties of dense classical fluids may be understood by
considering the two-body forces as the sum of a repulsive interaction with a
short range, as, for instance, the repulsion between hard spheres, plus a small
attractive part™® which is to be treated as a perturbation.® It is of course
very tempting to extend the same idea to nonequilibrium properties of classical
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fluids. Frisch and Berne® and other authors® have proposed explicit
formulas for the correction to the velocity correlation function due to a small
attractive potential in a hard sphere fluid. The computer experiments of
Watts‘® showed that these formulas yield strongly divergent time integrals.
A number of effects were not considered in the theory of Frisch and Berne.
Pomeau indicated how to carry out an explicit calculation of the first-order
correction due to a small added interaction.™ However, it seems interesting
to study this problem on an explicit example, where everything can be
computed explicitly. Also, this calculation should not be restricted by the
assumption of a low density, since, as stated by Watts,® the divergence of
the correction of Frisch and Berne bears some connection to the virial part
of the equilibrium pressure, which is negligible in this low-density limit.

In the present paper, we shall study a model where such a dynamical
perturbation calculation can be done explicitly. As shown by Jepsen® and
Lebowitz er al.,®19 the velocity time correlation of a one-dimensional
system of hard points may be found exactly. Following the same general
method as these authors, we have found explicit expressions for the first
correction to this time correlation function, due to a small perturbation of
the interaction. Moreover, we have indicated how to compute the same correc-
tion for a one-dimensional gas of hard rods.? Before discussing more precisely
the points under consideration, we first recall the general method for comput-
ing the lowest order correction to the velocity time correlation. Then, we
recall the main features of the solution for the one-dimensional system of
hard points, as found by Jepsen® and Lebowitz et al.®*? This method is
applied to the exact calculation of the correction proposed by Frisch and
Berne. It is shown to be divergent in this one-dimensional case, and this
divergence is very similar to the one found by Watts in the three-dimensional
case.

1.1. General Formulas

Let us begin with some definitions and notations.
The reference fluid is the fluid where particles interact through the un-

2 Actually, the case of a gas of hard points with an attractive interaction must be ap-
proached with caution. Since an infinite number of particles may be on a segment of
finite length, the energy of this system is not bounded from below by a quantity
proportional to the number of particles, and no thermodynamic limit exists. However,
this catastrophe has no influence to first order in the amplitude of the perturbing
potential, say 7, as the factor in front of » does not depend on the sign of 5. There is
only a strong indication that any dynamical quantity has a nonanalytic behavior with
respect to 5 near o = 0 for a hard point system with an interaction of amplitude 5. For
an attractive potential, one must consider hard rods with a finite size (instead of hard
points of zero thickness) in order to avoid the catastrophe alluded to above. This hard
rod system with a small interaction is briefly discussed at the end of the present paper.
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perturbed potential only. Averages over an equilibrium ensemble of initial
conditions for the reference fluid are labeled by the index R:{ >. The
perturbation is denoted by 8U(lr; — r,;|) = 8U;;. Though it is not necessary
so far, we shall restrict it from now on to a square well perturbation

8U;; = mela — |ry — 1] (1)

where 7 is the depth of the square well, for which By « 1 (87 = kgT; kg is
the Boltzmann constant and T is the absolute temperature), and where «(x) is
the Heaviside step function: e(x) = 0if x < 0, and «(x) = 1 if x > 0.

Actually, this allows one to treat any kind of perturbating potential to
first order, since any potential which is sufficiently regular can be considered
as a sum of a continuous set of square wells following the formula

+ o
SU(r) = f da [dU(a)/dale(a — |r|)
0
so that the linear correction to the velocity time correlation, namely &ui(t),
can be computed for a given potential U(r) through

+ oo

()= | da [4U@)da] 3y 0

where 8¢(1; @) is the correction to #(f) computed for a square well of width
and unit depth [from now on we shall drop the argument a in 8¢(¢; a), so that
8i(¢) shall stand everywhere for the correction arising from a square well
of width a).

The velocity time correlation of the reference fluid is (¢} = <. (Q)v.(t)>g.
When the reference potential is a hard core repulsion, its first-order correction
can be written as the sum of three terms

B0 = > 8) @

each of them being expressed by a quantity averaged over the reference fluid:

1. The correction &,(¢) arises from the expansion of the statistical weight
to first order in the perturbating potential

2. The correction §,(¢) takes into account the small change in the
velocity v,(¢) due to the perturbating potential

3. The correction 8z¢(t) accounts for the delay in the collision time because
of the small displacement of the trajectories.

A correct definition of these last two quantities is not obvious, so let
us define 34(¢) (i = 1, 2, 3) more precisely.
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(i) The contribution 8,#(¢) is well known. This is simply

autt) = s O0™0) 3, 1803 — (5Uyal ©)
1#F7

the sum 2, ; running over the whole set of nonordered pairs in the system.
v,®(t) is the velocity of particle 1 at time ¢ on the trajectory of the reference
system.

(if) The correction 8x(t) arises from the small change in the velocity
v1(t) due to the perturbing interaction.

Suppose that particles i and j start with the unperturbed velocities v, and
v, at ¢ = 0 and that their mutual distance becomes equal to a (range of the
square well) at some later time ¢, so that r,;v;; < 0 and no other interaction
affects the motion of i and j between 0 and #; ; thus, the relative velocity of i
and j just after #; is

vy = sgvy(v,” — 4m)'e )

where sg x = 1 if x > 0 and —1 otherwise. Note that in Eq. (4) we took the
mass of the hard points as the unit mass. If v,® becomes smaller than 4|),
formula (4) becomes meaningless in the repulsive case as the particle is
reflected by the square well. As shown in Section 3, this last effect is not
important to first order in 8. Except for this small region in velocity space,
the difference v;; — v;; is of order 4. In order to account for this contribution
of the small deviations, Frisch and Berne® have derived the following
formula, which should be valid for a hard sphere reference fluid:

590 = (1) = 1O 3, 7o 0,0 . ©

the prime indicates that our formula for 8,1%(¢) will not be this one.

Watts® has shown by computer experiments that for large times
3,'4(t) has a nonzero finite limit. This will be confirmed by an explicit
calculation of 8,'4(¢), which may be done quite simply in the one-dimensional
case. On the other hand, we have shown ™ that Eq. (5) does not fully account
for the effect of the small deviations of the hard sphere trajectories. But,
contrary to Berne and Frisch, we have not found any closed formula for
8,4(t), this quantity being just given by a kind of recipe requiring a detailed
knowledge of a trajectory of the reference system.

(iii) The origin of the last contribution to 8y(?), i.e., 8z4(¢), is less obvious
than those of 8,4(¢r) and 8x4(¢). In fact, due to the small deviations of the
trajectories caused by the potential 8U, a hard point collision between, say,
particles i and j does not occur at time f;, as in the reference system, but
attime ¢, + 81,;. Take, for instance, 8z;; > 0, and let v; and v, be the velocities
of i and j before the collision; thus during the time interval [t;;, t;; + 8¢;],
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the velocity of, say i, is v; in the perturbed system, although it was v, in the
reference system. During this small lapse of time the change of velocity of i is
large, and its amplitude does not vanish at n = 0 (5 is the depth of the per-
turbing potential), although its duration is of order |y|. However, the net
effect of the equilibrium average over the initial conditions is roughly
equivalent to a time integration of this velocity change, so that smalil devia-
tions during a finite lapse of time [as the one accounted for through 8,4(¢)]
and a finite deviation during a small period of time may contribute to the
same order in 7. Actually, this is verified in the one-dimensional model. It
turns out that the contribution 8;y(¢) requires the most intricate calculation.

1.2. The Model and the Correction of Berne and Frisch

In this subsection, we present the main features of the hard points
dynamics, as analyzed by Jepsen® and Lebowitz ef @l.®1? We then study a
simple time correlation function, which yields the correction found by
Berne and Frisch.

The reference fluid is a gas of hard points on an infinite line, which will
be taken as the limit of a system of N points on a line of length L, L — oo,
with N/L = p finite. A number of dynamical quantities of this system may
be computed using the method of Lebowitz ef al. The basic idea is to replace
the dynamical quantities of a hard point gas by some other dynamical
quantities of a one-dimensional gas of noninteracting (or “free’) points,
which, in principle at least, depend in a very simple way on the initial condi-
tions. At time ¢t = 0, one defines the rank of a particle / on the line, which is
measured by the integer

5(0) = > €[r(0) — r,0)] ©
J#i
In the hard point system, there is only an exchange of indices at each collision,
so that the velocity and position of particle 7 at time £ in the hard point system
are those of particle & in the free point system with the same initial conditions
and such that
ou(t) = 2 elrlt) — r/0)]
i#k
is equal to ;(0).

Let r,®(¢) and v;®(z) be the position and velocity of a particle 7 at time ¢
in the hard point (reference) system, {r,(0), v,(0)} being the set of the initial
conditions. Then, any function f of r*(¢) and »®(¢t) depends on the initial
conditions as

STr#(@), v*0)] = Z 8s,0 e S Tr(0) + 2:(0)2, 0(0)] (7



212 A. Gervois and Y. Pomeau

where §,, , is the Kronecker symbol:
2n
8y = f (d8)2) eiom=m ®)
0

From Eqgs. (5) and (7), the dynamical correction of Berne and Frisch is

8 (1) = _zk: <[rk(0) + 0(0)t ~ r1(0)] 85,7,0000) Z 3F11(0)>fp ©)

j#1l

where 8F;;(0) = —0oU[ri(0) — r;(0)]/0r,(0) is the small force exerted by
particle j on particle 1 at time O (in this calculation, we shall not restrict
ourselves to a particular potential) and where the average is taken on an
equilibrium ensemble of initial conditions for the free point system as
indicated by the subscript fp. After reduction of the sums 3, and > in (9),
we find three terms corresponding to the following combinations of indices:
D k=1,j+#1;()k # 1,j= k; (i) 1, j, k all different.

It may be shown that the first and second combinations yield a contri-
bution to 8,'¢(¢) vanishing at large times, although the third one gives a
nonzero constant in this limit:

32’¢(t)tfm —(N - DV — 2)<("2 + vof — "1) 8F13(0) Soz(t),01(0)>fp

In this last expression, we have replaced r,(0), v5(0),... by g, vs,. . ..
We carry out the ensemble average explicitly and get

540 =~V - DO =2 [ dote) [ doghte)

XJ-LIZ dr1J1Ll2 dr2 Li2 dr3

Fg — 1 )
- - ——— + vy 8F(|ry — r3))
-Li2 L - L2 L ( t ? [1 3l

L

-L{2
2n d@ )
x f 7 exp{iffe(ry — r1 + vot — vit) — €(ry — ry)]}
0 T
N + ©
X exp{i6le(ra — ra + vat — v5t) — e(ry — 1)L | f v, ho()
i=4 - 0

L2y
- Ole(r, — 1, ol — — &N —n
X f_m T exp{iffe(ry — r, + vt — vjt) (ry — )1}
where
ho(v) = [1/(2m)Y3] exp(—0v%2) (10)

(the energy unit is chosen in such a way that m/kgT = 1). In the N — o
limit, the last factor on the right-hand side (i.e., [ ;54 f dv,- - -) is replaced by

exp{itp(sin 0) (rz—_t——ﬂ + uz) — pt(l — cos (9);;,(r2 —t Ity 02)}
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where p(x) is the collision frequency

w) = [ ool — (11a)
= 2hy(x) + 2x Erf (11b)

with
Erfx — J”x dv ho() (110)

After we integrate over v; and v, set x = (r, — ro)/t, y = {r1 — ra)/t,
w = (ry — F)/t + vy, and integrate over r; and x, we get
2z
S.() = —t f w do f %f (p1)? explitp(sin B)w — tp(1 — cos O)yu(w)}
t— - 0

i0 —i8
x [1 J;e -1 - e”)Erfw][l +2e -1 - e“'f’)Erfw]

+ @

2

Except for the factor exp{itp(sin )w — pt(1 — cos Bu(w)}, the integrand
on the right-hand side of (12) may be rearranged into a polynomial in
(1 — cos §) and (isin 6). Using the saddle point method as explained in
Appendix A, we can show that the contributions of the various terms of this
polynomial behave as =1 as 1 — o0, except for the following term:

e 1+ e 0 -6
xf dy — (1 — &) Erf(w + ) le®® sF(1y)  (12)

OB J ] " v do fo ’ %67 (p1)2(i sin 6)
x explitp(sin 8)w — 7p(1 — cos B)u(w)} f " sF )
= 8U(r| = 0| S o) expl = ptu(a)])
x Io(pt[p*(w) — ?]'7) (13)

where I, is the modified Bessel function of order zero and 8U{(|r| = 0) is the
limit value of the perturbating potential, which is assumed to be continuous
and bounded at short distances. The integral on the rhs of (13) can be
evaluated again by the saddle point method and we get the simple final result

34(t) = 8U(r)],=o (14)

In this last formula, we recover qualitatively the result of Watts, i.e.
8,"¢:(t) has a nonzero limit at ¢ — oo, but in contradiction to the statement by
Watts, this value is not connected directly to the virial part of the equilibrium
pressure, at least for this one-dimensional case.
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Now we shall consider successively the corrections 8;4(¢), 8,4(f), and
83(¢), which, as explained above, arise from the expansion of the equilibrium
weight, from the direct effect of the small interactions on v,(¢), and from the
time delay in the hard point collisions, respectively.

2. CORRECTION ARISING FROM THE STATISTICAL WEIGHT

From Egs. (3) and (7), using the same notations as in (9), we get for this
correction (8 = 1)

S.4(0) = %<v1 > vt 3, 15U = 1) = UG - rj-)>]> 1)

L i#d
i,j=1,N

T

We have now six different terms to calculate, corresponding to the following
six combinations of indices:

Dek=Li=1;j#1
(i) £ = 1; 1,1, all distinct.
(i) k £ 1;i=1;j=k.
vy k#1;,i=1;j#k.
WMk#li=kj#1,k.

i) 1, i, j, k all different.

The six quantities to be calculated are now

Ty = (N = 1Xv,?[0U;5 ~ {8U13)] 85, t9,00c0) (16a)
Ty = 3(N — DN — 2K0,°[8Uss — {8Us3)] Sal(t),51(0)> (16b)
T3 = (N — DN — 2Xv105[8U12 — {8U12)] 85,9,0500 (16c)
Ty = (N — DN — 2Kv105[8U;5 — {8Uy35)] So01,01(0) (16d)
Ty = (N — DN — 2)X0105[8Uss — {8Ux5>] 8550», 01000 (16¢)

Tg = 3N — 1)(N - 2)(N — 3)(”102[3(]34 — (8Uze] Saz(t),01(0)> (16f)
where we have dropped the subscript fp. The final result is

8up(t) = 2 T (17)

The details of the evaluation of the T are given in Appendix B. Let us just
sketch the method of calculation. It is not completely straightforward, as the
quantity {8U;,> for a given pair (7,j) vanishes in the thermodynamic limit.
For some T3, it may be completely neglected, although for others it must be
kept in order to get a finite result in the thermodynamic limit.

Consider, for instance, the case of T,. A partial average can be taken at
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once over the positions of the dummy particles, i.e., particles with an index
J = 4. Let us denote by < };,, this partial average. Thus,

2n

Boyty, 0000528 = . g—f_ exp{iffe;a(t) — €12(0)]} exp{ifle1a(t) — €15(0)]}

X [exp{itp(sin No, — pt(1 — cos Ou(vy)} + 0(]17)} (18)

where O(1/N) depends on 6, ¢, v, only and where €,(t) = €[r,(t) — ri(t)]. As
a function of 7,(0), the quantity ;,(f) — €;4(0) differs from zero over a finite
interval around ry(0); writing

exp{ifle;a(r) — e12(O)]} = 1 + $1(r2(0), 1)

we find that the function ¢,(r5(0), #)~—which depends also on 8, v;, r,(0), and
vg—differs from zero over a finite interval around r;(0). Then, from (18)

4

Grsrosorras = [ 52 1L+ 4100, DIIL + (), )]

0

x [exp{itp(sin o, — pt(l — cos Du(vy)} + O(lN)]
Expanding the product [I + ¢,(r2(0), £)][1 + #:(r3(0), )] and inserting the
corresponding value of 3,4, »,0)>j=4 into (16b), we find three kinds of terms.
The first does not depend on ¢, ; it depends on positions through the com-
bination {8U,; — {8U,3>) only and, once averaged, this gives zero. Another
term depends linearly on ¢,(r5(0), t) [or on ¢,(rs(0), £)] and, after averaging
over rz(0) [or ry(0)], it gives again zero. The only term surviving in the
thermodynamic limit is the one that is formally quadratic in ¢,. Due to the
presence of the two factors ¢, the integration over r,(0) and r3(0) is limited
to a finite interval around r;(0). In this domain {8U,3) ~ (@/L) 8U,s, so
that one may neglect therein both (8U,;> and the corrections O(1/N) to
exp{itp(sin O)v,---} and one obtains

2z
Ty =3(N — )N — 2)<vl2 BUzaf %(jexp{itp(sin o, — (1 — cos Optu(v,)}
0

xmm@w@m@w> 19

Very similar reasoning allows us to get explicit and finite integrals from
the general formulas given in (16). All these contributions reduce to one- or
two-dimensional integrals, which we have calculated by a Gauss integration
method. The results are plotted on Fig. 1. After some oscillations, the function
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8;4(t) goes monotonically to zero with increasing time. The saddle point
method discussed in Appendix A shows that, at long times,

Sul0) = papt)’ 20)

Thus 8,3(¢) provides a finite correction to the self-diffusion coefficient.
Moreover, we can find a few other exact properties of 8,%(2), such as the slope
at the origin, which is studied in Appendix B. Further, we have been able

to show that, when the range of the potential increases, 8,3(¢) goes to a finite
limit function.

3. CALCULATION OF THE CORRECTION 3x(t)

As explained at the beginning of this paper, the correction to the velocity
time correlation due to the perturbing potential may be divided into three
parts. Now, we shall consider the term denoted 3,(¢), which arises from the
small changes in v,(f) due to the interaction 8U. As we restrict ourselves to
perturbations linear in 8U, we can write this velocity shift as

sus(5) = > 8(0)

t#1

0300

4

pt

-0200

PR ———— g

Fig. 1. Plot of the contribution to 8y(¢) arising from the perturbation to the statistical
weight as a function of time for several values of the potential range.
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where Sv{(r) is the difference between the velocity »,(¢) in the reference
system and that in the system where the interaction §U,; is turned on at time
zero. From (7), one can express the values of 8v; in the hard point system
by means of év; for the free point system:

ov{(1) = Z Z B,itr,a1c0) SV (2)
i#k
where 8v{(¢) is now the change of velocity of particle 1, due to the inter-
action 8Uy; in the free point system. Thus

d(t) = Z z (o, 02(2) Sck(t).61(0)>fp 21
itk
where, again, the average is taken over the equilibrium ensemble of nbn-
interacting points. Due to the two summations on the right-hand side of
(21), 8,4(2) splits into three parts

3
Saif(t) = Z (22)
with
Uy = (N — 1)}<v; 862 8,,07,010 (232)
Uy = (N — 1)}Xv1 808 8;,0),01000 (23b)
and
= (N = DV — 2)Xv; 808 80,001,000 (23¢c)

We have now to express 8v{¥ as a function of #, of the range a, and of
the velocities in the unperturbed system. Two cases may occur, depending on
whether or not 7 and k interact through 8U,, at time zero. Let us consider
them successively. In the forthcoming discussion, we shall write 7y, rp,...
instead of r,(0), ry(0),....

(i) Particles i and k Do Not Interact at t = 0 (see Fig. 2a). The condition
for the nonvanishing of év{’ is therefore

lri—r >a

and (r;, — r)(v; — v,) < 0; with these initial conditions, 8v{® takes a constant
value, which is

3sg v (R — 4?2 — vy
at any time ¢ such that |r,(t) — r.(t)| < a; thus the corresponding contri-
bution to Svi? is
oo = 3{sg vui(vds — 4 — vale((ris| — @)
x ela — |ry + viatDe(—ruvw) (24)
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t=0 i k r
k (a)

a
[ _/W/ zone for interaction
t. L/ L L i
: A9

\

/
t /y N\
/ \

i [ q
7
te 7[ #Wone for interaction
(b)

k

t

Fig. 2. Deviation of the trajectories of two free points when a small perturbation is added,
for two cases: (a) The distance between the two particles is greater than a at time zero.
(b) The distance between the particles is less than a at time zero.

In order to write (24), we have assumed that, even during the interaction,
the relative distance between i and k remains equal to (ry; + v,f), which is
strictly true in the free point system only. However, the corresponding
correction arising from the duration of the collision, i.e., the change in
e(@ — |ru + vt|), yields contributions to 8u{¥ which are of order »? at
least. Furthermore, in order to get from (24) an expression for 8v{ which is
linear in %, one must expand the velocity difference as follows:

2
sg vVl — 4 — v = A 2% (25)

2] Vi
and keep the first term on the right-hand side only. But this expansion must
be considered carefully; in fact, as is often the case in this type of problem,
the terms that are formally of an increasing order in the small parameters
may yield more and more diverging quantities. In the present case, the terms
of order 4" are actually of the form »"/»®*~%, and this may give a diverging
contribution to 8,4(¢), due to the average over the velocity vy; near vy; = 0.
However, the negative powers on the right-hand side of (25) are cancelled in
part. In fact, the range of variation of ry; is of order |vy,|f around r,; = a; this
makes a quantity of order |v,;| appear in the integrand, so that the factor
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vt in the first term on the rhs of (25) is just cancelled by this v,; and no
divergence appears at this order in n. However, at the next order in 7, a
divergence appears which should ultimately yield a contribution to 8,3(f)
like 7%'2, as shown in Appendix D.

If the potential is repulsive (i.e., if > 0), the formula in (24) becomes
meaningless if |v.;| < (4n)*'2 which means that the relative particle does not
have enough kinetic energy to go over the potential barrier. However, it may
be shown that this range of the small relative velocities contributes as 5? to
824(r). In fact, let us consider the corresponding contribution to &0, which
we shall denote as 8v{’|2.. From simple dynamical considerations

Sz = —3oue(dn — v2)e((ru] = A)e(—rvim)ela — |1y + vit]) (26)
when v, becomes small, the product (|| — a)ela — |rix + vyt|) becomes

concentrated around ry;, = +ain a smallinterval of width |v,,|¢. Accordingly,
it may be expanded like

e(|r] — a)e(a — |r + vt))
= ||t 8(]r] — a) — LN)? &(|r] —)a ++wt)* & ([r] —a)  (27)
where we have dropped the subscript ik and where, by definition, §™(x) is
such that

J'_ ) 8P (x)f(x) dx = (=)d"/dx")f(X)] =0

Inserting the expansion (27) into (26), we get series of functions 8(v), §'(v),...
multiplied by increasing powers of v and [v|: v|v|, v°, v|v®],.... Without any
assumption about the parity in v of the rest of the integrand, we get, after
averaging, contributions which are at most of order %2, »2,.... This means that
the contribution of particles that cannot go over the potential is at most of
order »%2, and it can be neglected in the linear approximation.

(i) Particles i and k Interact at t = 0 (Fig. 2b). In this case, 8vf> differs
from zero only when |ry(f)|] 2 a. Furthermore, if the potential 8U;, is
attractive (y < 0), Sv{’ takes a particular form in the range |vy] < (4|n)¥2,
which corresponds to classical bound states for particles i and k. However,
as in the previous case, this gives a contribution to éu{ which is negligible
to first order in n and the main contribution to 8v{? arising from particles
interacting at f = 0 is

8P = 1[sg vi(vd + 4'? — vyle(a — [rul)e([ru + vut| — @) — 27) (28)
It will be often convenient to replace in this last expression e(|ry; + vt| — a)

by
€(_r,ﬁu,d)e(t ~ %{5»«_4) + e(rmvki)ﬁ(l + %ﬁ)
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Moreover, as explained in Appendices C and D, one may replace
sg v(vfs + 42 — vy by 29/
without making any divergence appear in 8,(¢).

Inserting into (23) the value of dv§? that is the sum of the right-hand sides
of Egs. (24) and (28), we get the final expression for 8,4(¢), which depends on
a number of integrals listed in Appendix C. In this appendix, we have also
studied the asymptotic behavior of the U, as it governs the existence of the
correction to the self-diffusion coefficient, which is the time integral of
3¢(t). For U, and Us, this asymptotic behavior is

Uy, Us tfw [pa/(pt)®] In(pa/pt)

On the contrary, it turns out that U, decreases at infinity like 1/¢; more
precisely

Up == ~[2n/Q2m)"*]palpt
whence the asymptotic behavior for 8,4(¢):

Sy(t) = —(—2511/5 Z—f + Gptc‘l)_i {A In (%Z) + B] + - (29)
As the self-diffusion coefficient is the time integral of this velocity correlation,
this 1/¢ contribiition should yield a logarithmically diverging contribution to
the first-order correction to this transport coefficient. Actually, it turns out
that this 1/¢ is just cancelled by another contribution of the type studied in
the next section, so that no logarithmic divergence appears. It should be
interesting to get the value of the coefficient of the (In ¢)/¢2 term. The calcula-
tions are so complicated that we cannot claim it does not vanish. However,
the main point is that the time integral converges.

The time variation of U, is plotted on Fig. 3 for several values of a.
The behavior of U, for a large potential range also is indicated. For not too
large ¢t (¢t « a), the function is nearly zero. The maximum of U, moves
toward large #; it can be shown (by a saddle point method) that the function
becomes concentrated around ¢ ~ 4'/? and that the height of the maximum is
pt exp{(pt)?/2 — pa}. For very large times (¢ > a), the function U, decreases
slowly, like a/t. The numerical values taken here for a (¢ < 10) and pt are
likely not large enough to check this behavior.

4. CALCULATION OF 383(t)

As explained in the introduction, part of the correction 8i(z)is due to
the difference of the collision times for hard points in the reference system and
in the perturbed system. Let 8;4(¢) be this contribution to 8¢(z). We shall
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Fig. 3. Plot of Ux(z) vs. time for several values of the potential range a. It goes to zero
like aft.

first explain how to compute this time delay by starting from the dynamics
of the free point system.

Let us consider a collision arising at time ¢, between particles 1 and &
in the unperturbed hard point system. Furthermore, let ér,(¢) be the spatial
shift of particle i due to the action of U between times 0 and ¢. This means
that, if particle i is located at r;(¢) at time £, in the unperturbed system, it
lies at r,(t) + 8ri(¢) at the same instant in the perturbed system. Thus, the
time delay for the collision (1k) is

8ty = —[8r:(2) — Sr())/(v1 — vi) (30)

where v, and v, are the velocities of 1 and k before the collision. If 8¢,, > 0,
the collision is delayed and during the interval [t,,, #;;, + 06t;;] the velocity
of particle 1 is »; in the perturbed system, although it was v, in the reference
system; on the contrary, if 8f,, < 0, the collision is in advance and during
the interval [#;, + 8y, t1;] the velocity of particle 1 is v, in the perturbed
system, although it was v, in the reference system. Let us denote by &'v,(¢)
the velocity change due to this time delay; thus

8'vy(t) = Z 3(t — tmn) Otmn Umn Soniiz) oo (31)

m#n

where

tmn = —[rn(0) — r2(0))/[v4(0) — 2,(0)] (32)
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is the instant of the collision (mmn) in the reference system. Due to the presence
of the function &(t — f,,), there could be some indeterminacy in (31), as
on(?) is undefined at the instant of the collision (mn); in the present case, one
must keep the value of o,(¢) just before the collision, as emphasized by the
notation o,(f,,). In order to get completely explicit formulas from (31), we
have to express 6f,,, i.c., 8r(f). To first order in %, one may suppose that
8ry(t) is just the sum of the contributions due to the interaction U between
m and any other particle between times 0 and ¢:

Srat) = > 8rAe) (33)
p#EmM

As in the preceding case, we have transformed the problem into the
evaluation of a perturbation in two-body dynamics.

The quantity 8r&(¢) takes different forms, depending on whether m and
pinteract or not at t = 0 and at time ¢, although in any case they must interact
between 0 and ¢. Simple considerations show that, when particles m and p
have interacted between 0 and ¢, but do not interact at time zero, ér&¢)
takes the form

Srﬁ,f)(t) = %e(lrmpl - a)G(_rmpvmp)[Sg Ump(vz%w — At — Umyp]

x e(t — Tmp)[(t — Tm,,)e(T,,,p —t+ ﬁz—) + 2a

[Ums] |mp]

y s(t _7, -2 )] (34a)

|Dms|

where T,,, (which must not be confused with the time ¢,,, defined previously)
is the time after which particles m and p begins to interact

Tpp = (lrmpl - a)/lvmpl (34b)

(see Fig. 4a).
If, on the contrary, particles m and p interact at t = 0, but do not interact
at time ¢ (Fig. 4b), then 8r&(¢) takes the form

Srf,’,’)(t) = 3[sg vmp(v?np + 477)1/2 — Upple(@ — ‘rmpl)

Xty + togt] = )]t = T
mp

Inserting (33) into (30), we get

bt = — ()| 3 o)) = 3 520

p¥l ¥k
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Fig. 4. Perturbation of the positions due to a small interaction for free point particles.
(a) Particles do not interact at time zero. The deviation 3x(r) increases until there is no
more interaction. The deviation is constant when the particles are no longer interacting
(time ¢’). (b) Particles interact at time ¢ = 0. After they have left their mutual potential,
the deviation increases linearly.

where 6r{’(¢) is the sum of the right-hand sides of (34) and (35): &rP(s) =
Srii(r) + 8ri(r). Once inserted into (31), this gives for the sought quantity,
Le., 8'vy(1),

5000 = = 3 3 i 80 = 1) | 5 500 =3 Sr,am(r)] (36)

REM M pEM r#Fn

so that the time correlation function S;(¢) = v, 8'v,(¢)) splits first into two
parts, the first one arising from &r{(¢), the second one from 8r{(¢). Due to
three summations (3, >, and >,), each of these two parts of 8z4(¢) splits
into seven contributions corresponding to particular combinations of indices.
Using

driP(t) = —or™(t)

[which may be verified at once from (34) and (35)] to reduce slightly the
numbers of contributions, we obtain
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with
Vi= —(N = 1)X01 850,000 O — t12) SrP(1))sp (38a)
Va=—(N = 1)Xv, 8 02(t12),61(0) 8(t — t1g) Sr(l)(t)>fp (38b)
Ve = —(N = DIV — 2)Xv1 85 05,01000 O — 123) Sr5())sp (38¢)
Vo= —(N — DN = 2)v1 8(¢ — 113) 3rP(1)[85,t50,000 — ontim,onomleo
(38)
Vi=—(N—- DN - 2)(“1 8(t = 112) IrP(O)[85105m,000 — SogttiporDro
(38¢)
Vs = —(N — 1)(N — 2)<vy 8(t — 33) 80,05, 0,0 [0r57() — Sr§X(D)Dep  (381)
Vo= —(N = DN = 2)(N — 3Ky 8(f — t25) 85 05,010 [0r5(t) — Sr§ ) Dsp

(38g)

From now on the calculations are very similar to those in Section 3. The
results are listed in Appendix E.

As in Section 3, there is a term which behaves like ¢~ for long times. It
comes from the V contribution and it just cancels out the diverging part of
U,. We may write

Sa(t) = (22’)71,2 oy [A ln( ) il BJ (39)

where A’ and B’ are constants that we did not calculate explicitly.

5. RESULTS

Before going to the hard-rod case, we gather in this section all the results
we have obtained so far.

We recall that, for small perturbations, the correction to the velocity
autocorrelation function is the sum of three terms [see Eq. (2)]

B(O) = 3 340)

each of them being itself a sum of several contributions [Egs. (17), (22), and

37
Sub0) = >, T

3

s(t) = > U

k=1

Sp(t) =2V + Vo + Vo) + Va+ Vi + Vs + Vo
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Each correction Ty, Uy, ¥, may be expressed as a sum of multidimensional
integrals, which are listed in Appendices B, C, and E, respectively.

For small perturbation 7, no difference exists between the attractive
and repulsive cases: The correction 8/(¢) is proportional to 5 and the first-
order correction to the self-diffusion coefficient also exists. For ¢ = 0,
8y(t) = 0 and after some oscillations, it decreases monotonically to zero.
From Eqgs. (20), (29), and (39),

(1) = nleal(pt)*]IC In (pafpt) + D] (40)

where C (=4 + A') and D are constants. The C coefficient is obtained after
a lengthy and tedious calculation. Some indications are given in Appendix C.
We did not carry out completely this calculation, the main point being that
the time integral of 8y(¢) still exists.

Plots of 5~ 28¢(t) for several values of the potential range a are shown in
Fig. 5. The dashed line represents the limit curve for ¢ = c0 and ¢t « a. It
departs from the curve for a = 5 at pt ~ 1 (t/a ~ 0.2). To test more precisely
the asymptotic behavior for large @ and a large range of values of pf (pf ~ 5
or 10 for instance), it should be interesting to plot &)(¢) for a = 20, for
instance. Unfortunately, the integration method becomes less precise as
great relative compensations occur between the different contributions and
no quantitative result may be obtained in this range of values of a and ¢, at
least by using our numerical integration method.

6. CONNECTION WITH HARD RODS—THE VAN DER WAALS GAS

Now, we shall study to what extent the preceding results may be
generalized to a gas of hard rods, each of length b (Nb « L). As shown by
Lebowitz et al.,®19 when one evaluates averages of functions of the velocities
only (velocity autocorrelation function, self-diffusion coefficient), the hard
rod system is equivalent to a gas of hard points on a line of length L — Nb,
the actual density being

p" = p/(1 — pb) (41)
and all the formulas are unchanged after the substitution p— p'.

However, an important difference occurs for functions depending also
on the positions; on a given space interval / between the center of two rods
(! = b), there cannot be more than m intermediate rods—m being the greatest
integer smaller than (/ — b)/b—although, for a gas of hard points, any
number of particles in a finite interval is allowed.

Using a method very similar to the one of the preceding sections, it is
possible, at least in principle, to compute the first-order perturbation 3yr)
in the case of hard rods of length b perturbed by a square well potential. For
that purpose, the hard rod system should be first transformed into a hard point
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Fig. 5. Plot of the whole perturbation 8y(¢) vs. time for several values of the potential
range.

system by picking a particular hard rod, say «, then translating jb toward the
right the jth rod on the left of «, and translating j'b toward the left the j'th
rod on its right. After this overall length contraction, the range of the square
well between particles numbered, say j and j + k, becomes sup(0, a — kb)
[sup(x, ) = x if x > y, and =y otherwise] so that it becomes a kind of
multibody potential. This explains why, although the computations are
tractable in principle for the hard rod case, their complexity makes them
discouraging. However, we have investigated the case where the range of the
square well becomes much larger than the mean interparticular distance
(@ > p~1'). In this limit, the number of particles lying on a length of order a
becomes an almost nonfluctuating quantity. Thus, one may consider that,
in this limit, the perturbed hard rod system behaves like a hard point gas
perturbed by an interaction of range a' ~ a — {(m)>b, {m) being the mean
number of rods on a length q, i.e., <m) = pa, so that a’ ~ a(l — pb).
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Finally, the perturbation 8y(¢) for this hard rod case may be derived
from the formula of the previous section through the change

p—>p" = p/(1 — pb) (42a)
a—>da = a(l — pb) (42b)
Let us now return to the study of 6(¢) at finite times in the limit @ — co.
We choose to study the term 77, which is the simplest one. Some modifications
occur for the other contributions but the proof does not differ essentially.
We first replace the system of N rods of centers ry,..., 7y at time ¢ = 0
(—=L{2 < ry < - < ry < L{2) by a system of N points of positions xy ..., xx
[-L — (N — Db/2 < x; << x5y < L — (N — 1)b/2] through
rl - x1 + %(N —_ I)b,..., rk = xk + %(N - I)b + (k - I)b o
The interaction 8U;; depends now on the number p (0 < p < m) of
intermediate points through
U, = 8UP =9 when p<m and [x;— x| <a-—-(p+ Db
=0  otherwise (43)

Using a free-point formalism, we rewrite 7; as

1
N Z (v? So'i(t),o'g(O)[SUij - 8URD

i#7

1
= N Z {v? 80;(0,0,—(0) Uy

Y
7 m N-p-1
=W -1! Z Z 0P SUR: 4y Sy, 01603
p=0 i=1
m N
W=D D 0P SUR 1 8omaor
p=0i=p+2

(X1 < X << xp)

We study only the first term; similar arguments hold for the second one.
We express it explicitly as (we haveset j =7 + p + 1)

m N—-p-1p+® ) + L—-(N-1)% dxi
— 1! . Y do, Y do. _—
W-nry > [ vy | mwyan [ =
L-(N-1) dx- 2n d@
XJ _______[ ad
0 L-N-1)b), 2=
x exp{ifle(x; — x; + vt — v;t) — e(x; — x)T}
dx, \
x fff IJ;ZLL-—-————_ o = Db exp[—ife(x; — x)]

Xy <Xt <XN

+ w
« f doyho()) explife(xi — X, + vt — vt)] (442)
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Let us rewrite the last product in the integral as

” Fb,z,v) |r 1
At ]

1G(0,v)  tF(8,z,v)
L-(N-1Db L-N-1b

x [1 + ]H"” (44b)

where

PRy

F,2,0) = i~ f " dx, J dv, ho(0)

x5
x exp{if[e(x; — x; + vt — vjt) — (x; — x)]}
1 + &

=—— 2+ 1 =) ~ v) — ¢(@)] (45a)
[L—(N—1)blj2 +o
G(b,v) = t7* dx dv, ho(v,
(o) =1 f—[L—(N—l)bllz & f—m b hol)
x (exp{ifle(x; — x; + vt — vyt) — e(x; — x|} — 1)
= —(1 - cos Ou(v,) + isin by, (45b)

the functions ¢(x) and u(x) [=2¢4(x)] were defined above, and z = (x; — x))/t;
the function F is concentrated around small values of z (|z| < 2).

Now formulas (44)—(45) are exact but very difficult to handle. Thus, we
restrict ourselves to large values of a.

In the case of a hard-point system (b = 0), taking the limit consists in
(i) replacing the summation >7., by the summation >¥-2 as the terms for
large p do not change anything, the main contributions arising for p ~ Vm;
and (ii) dropping the step function e(a — (x; — x;)) = «(a/t — z); this implies
that ¢t « « (finite times).

The resummation is then possible, and the product

[1 T —tG(% i1)1)17]%2

is replaced by the exponential
exp{p'tG(6, v,)} = exp{itp'(sin O)v; — (1 — cos O)p'tu(v)}.

When b # 0 (hard rods), a — (p + Db is still large for the values of the
index which are of interest (p ~ Vm) and we can drop the step function.
When p increases, the integration interval becomes smaller, but it corresponds
to values of p for which the contribution of the integrand is negligible.
Operations (i) and (ii) are then allowed and the result still holds, i.e., one may

obtain the results for the hard rod system through the substitution listed in
(42).
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APPENDIX A. ASYMPTOTIC BEHAVIOR OF THE
CONTRIBUTION FOR LARGE TIMES

For large ¢, all the integrals which we have to consider can be rewritten
as

S = f dw o' F(w) f (1 — cos 8)*(isin 6)

x expliptw sin 8 — pt(1l — cos Hu(w)] (A1)

where F(w) is an even function of w, independent of ¢, and F(0) # 0; «, 8, y are
positive or zero integers, and y + B is even; otherwise .# = 0 by the sym-
metry (4, w) = (— 6, —w).

Let us rewrite the integrand as i? exp (6, w), where

Ww, ) =ylnw + In Flw) + «In(l — cos §) + Blnsin 6

+ iptw sin 8 — pt(l — cos Hu(w) (A.2)
The saddle-point equations read
ol _y | Flw) _ _
i e o) + iptsin 6 — pt(1 — cos Hu'(w) =0
O o sin 6 cos 0 _
300, T = cosd + B nd iptw cos 6 — ptsin Ou(w) =0 (A.3)

and the second-order derivatives are

& _ - Fw) - v
5o = + o [F( ) — pt(1 — cos N (w)
2
-é—z—lé‘-é = ipt cos f — pt(sin Ou'(w)
o? d{ sind cos 8 . .
% = (I——lr_z:o_s_@) ﬁd@ (sm 8) — Iptwsin 8§ — ptcos O u(w)

(A.9)
We shall denote (wq, 8;) a couple of solutions of (A.3); for large ¢

2w .
I~ > !_D_?’ﬁzﬂ exp v(wo, 0o) (A.5)

for all saddles

where D is the determinant of the second-order derivative
| o 8%low 80

T e 0w 8%pj00?

We shall consider several cases.

(A.6)
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Al. a=p=0
Equations (A.3) reduce to
ylw + F'(w)/F(w) + iptsin & — pt(l — cos Hu'(w) =0
iwcos 0 — sin § u(w) =0

If wy is not small, 6, is not small either. It is then easy to see, using
(A.5)-(A.6), that the contribution to .# is exponentially decreasing with ¢;
then it is surely negligible with respect to the inverse powers in which we are
interested. Then, we shall look for solutions to the saddle point equations
where o, and 8, are small.

(i) If y = 0, the only possible solution is w, = 0, 6, = 0. We get
P(wq, 0p) = In F(0)and

D= F"(0)/F(0) ipt
ipt — ptp(0)

whence S ~,_, 1L
(i) if y # O (y even), both w, and 6, are small and to first order
iwy = Gou(0), ylwo + ipthy = 0
whence
b = ily/pt(0)]*2,  wo = % [yu(0)/pt]"'?
There are two symmetric saddle points. At each saddle point
exp [(0o, wo)] ~ [yu(0)/p1}"*F(0) exp(—v/2)
D~ 2p%*

and the contribution of the saddle point is ~(¢p) =72,

A2. a+B >0

Again, if both 6, and w, are finite, the corresponding saddle points give
a contribution decreasing exponentially at large ¢. We come now to the other
saddle points.

(i) ¥ = 0. From Eqgs. (A.3), there is no saddle point where w, and 6, are
both small or when wy is small and 0, finite. We investigate now the opposite
situation, i.e., 6, small and w, finite. To first order, we have

(2e + B)/by + iptwy = 0, F'(wo)/F(wo) + ipty = 0
whence we obtain the implicit equation for w,

F'(wo)/[F(wo) = 2 + B)lwo
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and 8, ~ i(2x + B)/tpw, is of order ¢~1. As F(w) is an even function, there are
generally two symmetric saddle points. We have

exp o, 00) ~ e S S fexpl - (2a+ﬁ)]}(2“+’3)

o[/ de) (E'[F) ] o
D~ (1) {*“—zTﬁ—_ + 1}

and the asymptotic contribution of each saddle point is like ~ (zp) =" ~2¢7%,
(ii) ¥ # 0. Starting from Egs. (A.3), it is easy to verify that there are
no saddle points when 8, is finite and w, small. There is again a solution for
8, ~ t7* and w, small and the above results aré unchanged. There are
supplementary solutions when both §, and w, are small.
To first order, Egs. (3) reduce to

ylwy + ipthy = 0, (2o + B)/By + iptwy — ptOou(0) =0 (A7)
when 2o + 8 # y we get 8y, w, ~ ¢~ Y2 More precisely

0y = £[Qe + B = V/pm@?,  wo = +iy[u(0)/ptQ2u + B — )]

and

exp Plwq, o) ~ (pt) "¢+ D~ —(p1)(20 + B — W)y

whence the contribution at the saddle is ~,_, (tp) "1~ * B +72,
When 2« + 8 = v, the first-order equations (A.7) are no longer sufficient.
We rewrite Egs. (A.3) more carefully, keeping the second-order terms:

y + iptwefy + wo?F"(0)/F(0) — $iptwo0y® — $ae®pt0s*u"(0) + = 0
20 + B + iptwafy — o + 28)8,% — Liptwe® — pt8,%u(0)
+3pt00°p(0) — Fp16s%wou"(0) +

whence 8, < wo and 0,22ou(0) + wo[F"(0)/F(0)] = 0, and 8, ~ (2p)~%* and
wq ~ (tp)~1*; nevertheless, we recover the same asymptotic behavior as
above

S o~ prloa-BEN2
The resuits of this discussion are given in Table L.

Remark. We have concentrated our attention upon the contribution to
8y(t) behaving like ¢~ for large times, as they could give a logarithmically
divergent contribution to the diffusion coefficient. As the various contribu-
tions to this ¢~ term just cancel, the knowledge of the asymptotic behavior
of 84(t) requires an expansion to the next order in the saddle point method.
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Table I. Asymptotic Behavior for Large Times of Each Saddle Point
for Integrals Given by Eq. (A1)

Type of integrand
(values of a, 8, ¥)

Nature of the
saddle points

Asymptotic behavior
of # for each saddle
point when t —

a=8=0,y=0 (1) o, b, finite Exponential decreasing
(2) we=0,8=0 ()7

a=8=0,7v#0 (1) wq, b, finite Exponential decreasing
(2) wq, 8o ~ £7112 (pt)-1-v2

e+ f>0,y= (1) wq, 8, finite Exponential decreasing
(2) w finite, 6, ~ 71 (pt)~1-2e-8

e+ B>0,y #0° (1)  wo, b, finite Exponential decreasing
(2) o finite, 8y ~ ¢* (pt)=1-2e-8

(3a) 2a + B # y:
wo ~ 1712, ) ~ g2
(3b) 2 + B = y:

wg ~ 1YL By ~ g8

(Pt)—l—a—(ﬁﬂr)lz

‘Ha=8=y=1,then 5 ~ r~* (cf. Appendix A).

This should vield very intricate calculations, and we thought that it was
sufficient to notice that, due to the cancellation of the 7~ terms [Eq. (40)]

8(t) = (@)[Cln (a]t) + D]

Of course, it is possible that C just vanishes, due to some cancellation.
However, the main point here is that §(¢) decreases at least as rapidly as (and
perhaps more rapidly than) (In £)/t2 at t — oo, so that its time integral (i.e.,
the first perturbation in the diffusion coefficient) is well definite.

There are three contributions to 8¥(z) decreasing like ~*: U, (Section 3)
and V5 and V5 (Section 4). For U,, there is only one saddle point, so no com-
pensation appears and it surely behaves like 171, For V5, when integrating
over 6, we see that it behaves like t~* and exactly cancels the divergent part
of U,.

For large times, V; behaves like

+ an dg
V. ~ j do> who(w) f 49 (ot)2isin 6(1 — cos 6)
- o 2w

t— 0 ©

x expliptw sin 0 — pi(l — cos Hu(w)]

By integrating over the variable 8, then looking for small w, we find that
the ¢~ terms vanish. It is a little complicated to prove this point in this way
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and we prefer to show that the integral

0

lim | Vi(t)e e

€-0 Jg

exists, 1.e., that

2 do i(sin 6)(1 — cos )
27 e + pulw)(1 — cos B) — ipw sin O]

Vale) = J _+ des who(w) f

exists for small e.
Setting u = tan(6/2), we get

g e i
V7(€) = ;J_ dw whO(w)f € -+ 2p'u(w)] — 21pwu + 6}3

=§J'+w dw why(w) J‘ iduu
o FF 20u@F ), = 2@ T B@F

with

A(w) = pofle + 2pu(w)],  Bw) = ¢/[e + 2pp(w)]
Thus

_de why(w)
Vale) = Iéf e+ 2ou(@)P

u3

[42 — 2iA(w) — BX(@)P lu=i4w) +ita%w) + BANLI2

x Residue

3+ou

_ 2 dw Pewzho(w)
2)_. T8 T Zoeulw) T PP

Setting € = 0 in the integrand, we get an indeterminate result. Defining
the new integration variable x by

po = [2pp(0)e]?x
we get

< _3 (0 e dx x?
) 2 T, T

which exists.

APPENDIX B
As an example, we calculate here the contribution

T, = XN — 1)(N - 2)<1712[3U23 — {8Uy3)] 301(:),a1(0)>
The beginning of the calculation has been sketched in the text. We
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rewrite (19) as

T, = %ﬂjj dvy vy ho(vl)f (Pt)2
x expfitp(sin Hv; — tp(1 — cos Hu(r)}
+ a
< [[Tardye(G-1x =210 b @)

where we have set x = (r; — r)/t, ¥ = (r; — ra)/t, the exponential arises in a
way similar to that of Eq. (12), and

1+ o) = fenpl—i0eGe)] [ o ho) explitee + o, — )]

=1+ 2?%:_1 + i(sin 6) Exf(x + v,)

isin §
2
or, in an alternative manner
$1,0(x) = [(1 — cos 8) sg x + isin OJ[Erf(x + v;) — $sgx] (B.2)
where sg x = x/|x| and Erf(x) is defined in Eq. (11c).
Easy, but tedious manipulations give the final result
+ 27:
To=gn| dovoh(o) | 3ty
x explitp(sin 0)v; — tp(1 — cos Nu(vy)}
x {(1 — cos 0)’[f1(vy) + fa(vr) + fo(vy) + fi(—v0) + fo(—v1) + faol—0y)
+ i(sin 0)(1 — cos O)[ f1(v1) + falvr) + fo(v1) — fi(=v1) — fo(~01) = fa(~0v1]

sgx + (1 — cos 8) sg x Brf(x + v,)

= (1=cos O)[fi(vy) + 2fu02) + fil=22) + 2fal+00)]) (B.3)
with
Sifv1) zf:w dx [Erf(x‘+ vy) — %] [;u(x + vy + ;_z) ~ ,u(x + v, — ?) - 2.?]
-0 )
Fulw) = Laf i [Erf(x +0)) — %] (‘;’ - x)

and a supplementary integration, over the angle 6, can be performed by using
the relation

2n
J ?—9 exp{itp(sin O)x — tp(1 — cos Hu(x)}
o <7 :

= Io(pt[p*(x) — x*]''2) exp[ - ptp(x)]
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Here, I, denotes the modified Bessel function of index 0. The integrand
is now a real function in terms of ¢, and x only. It is this latter form which
we took up for numerical calculations.

Let us make a few more remarks:

(i) Consider the derivative of T,{(t) for 7= 0. The step function
e(a/t — |x — y|) may be replaced by one, but as ¢ appears at least under the
form (pt)? exp{pt(---)} in the integrand, the slope is zero at the origin.

(i) When a — oo, again (a/t — |x — y|) can be replaced by one and T,
goes to a limit independent of a.

(iil) Whena = 0,7, = 0.

Let us now list the five remaining contributions. The calculation of T
is very much similar to that of 7,. We get

e ** do
Ts = —WJ. dw ho*(w) QTT(PI)S(I — cos 6)
e o

x exp{itp(sin O)w — tp(l — cos Ou(w)}

x {(1 = cos 0)[fi(w) + falw) + fo(w) + fr{—w) + fo—w) + f5(= w)]
+ i(sin0)(1 — cos O] fi(w) +/3(w) + fal@) — fi(— ) = fa(— w) = fo(~ )]
—(1 = cos R fi(w) + 2fs(w) + fil— ) + 2fs(— )]} (B.42)

with the same definitions as above for the functions f;, f3, and f;. The other
terms are simple; we get

+ oo 2n d0
7= 3 dovihed [ 560

x exp{itp(sin Ov; — tp(1l — cos Ou(v,)}
X {(1 - cos 9)[#«(01 + ‘t—l) + /J“(Ul - ;—1) - 2ulv;) — %:—1]

+ i(sin 9)[#(01 + ‘;’) - ,u(vl - tf)]} (B.4b)

+ o 2n dg
To=n| dohie) | 60

x exp{itp(sin O — fp(1 — cos Du(w)}

x {(1 —~ cos 6)[ho(w + ?) + ho(w - tf) - 2ho(w)]

+ i(sin ) [ho (w + ;) — ko (w - ?)]} (B.4c)



236 A. Gervois and Y. Pomeau

T, = —n f | du () f aé  (pt)(1 — cos 6)

x exp{itp(sin f)w — tp(1 — cos Hu(w)}

= coslufo +4) 4 o= ) - 20 - ]
camfer) o)

2 f " deo hof) f (pt)2(1 — cos 6)

x expfitp(sin )w — tp(1 — cos O)u(w)}

x {(1 — cos B)[gi(w) + galw) + gi(—w) + g2 —w)]

+ i(sin )[ga(w) + ga(w) — gi1(—w) — ga(—w)]

— [g1(w) + gi(—w)]} (B.4d)

ol
I

with

g(w) =J dy [Erf(w + ) - %Mho(w +y+ ‘t—l) - ho(w +y - ;—1)]
4]
aft
a@) = [ ay [Brto + ) = 3ol + 5 = 2} = )
0
In all the above expressions, Aq(x), u(x), and Erf(x) denote the functions

defined by Eqgs. (10) and (11).

APPENDIX C. CALCULATION OF U, AND FINAL
EXPRESSION FOR 3&,4(r)

C1. Calculation of U,

We start from
U, = (N — 1)(”1 5’0(12) 501<t>,a1<0>>

+ o0 + +
= f do, f doy v3ho(0:)ho(vs) f Ay — 1)

- @

27 dg
X f o exp{ifle(r, — ry + vit — vt) — e(ry — Fy)]} S0P
[}

f du, ho(Uz)f drl
1>3

x exp{if[e(ry — r, + vyt — vt) — e(ry — B}
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+ 0 + © an dﬁ
= | ooy dn | e[ 50

—w - 0

x exp{iffe(r, — ro + v1t — vyt) — &(ry — P}

x exp{itp(sin O, — tp(l — cos Hu(vy)}
Lig _

x f Sv(ua vy — vz) a(r, — ry) (C.1)
-~ L2 t

where the second exponential is obtained by the same arguments as in Appen-
dix B and

F, — F
30(_1_?_2, vy — Uz) — 31;(12)

is given in (24)-(28). -
Setting now x = (r; — ry)/t and w = v; — vy, we rewrite U, as

+ ®© 27 dg .
U, = f dvy v1ho() f y
x expliptv, sin 6 — pt(1 — cos Hu(v;)]
+® o
« f dx explifle(x + w) — ()]} f deo hofvr — ) So(x,)

For the present, we shall be concerned with the last two integrations.
When the particle 1 is not in the potential of particle 2 for + = 0 (i.e., when
[x| > aft) it can be rewritten, using Eq. (22), as

+ o

% f :’ dw ho(v; — w)[sg w(w? — 4?7 — o] f dx e(—-xw)e(fx] - i_’)

x G(M ] + ;—z)e(ixf ol - 24 z—(;—?;%w)
x explifle(x + w) — ifle(x)]

or

®© +alt
%J dw [(w? — 4112 — w]J dx
0 - 0

a 2aw / a
XE—w—x—?+W6w+x+;
% [eiee(x-a»w)ho(vl _ w) — e—iﬁeiee(—x—w)}lo(vl + w)]

where we have restricted the integration domain to w = 0 by appropriate
changes of variables. Expressing the step function explicitly and setting z =
w + x, we get
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47+ (2a/t)21112

3/ do [(@* = 4" = w]
2),
w-aft
x f dz [¢9Phy(v; — w) — e BB (v, + w)]
1_ a/oto [200/t(w2 - 4m)1I2]—qaft
+ 5 dw [(w? — d)2 — w] dz
2 [47 +(2a/H211/2 ~alt
X [e9Phy(v; — w) — e e Phy(v; + w)] (C2)

Except when (a/t)? < |y| and for small velocities («? ~ 4|5]), we get
sgw(w? — )% — o ~ —(2n/w)
To first order in 7, the first contribution to U, simplifies to

2aft dw w—aft ) o
_nf _(_u_f dZ [etes(e)ho(vl _ w) _ e—tﬂetee(—z)ho(vl + w)]
0 —alt

@ dw alt ) o
. nf : dZ [6196(2)}10(01 — w) _ e—wewe(—z)ha(vl + w)]
2ait —ajt
alt

= —q | doh(v, — ©) — Aty + )]

_mal” %ﬁ [Ao(v1 — @) — ho(vr + w)]

t alt

=0 (o= ) icos Ot — ) — et + o)

at ¥

+ i(sin O)[ho(v; + w) + ho(vy — @)1}

— QL:ZJ‘W deo {(cos D[ho(vy, — w) — ho(vy + w)]
2ajt W

+ i(sin O[ho(vy + ) + ho(v; — )]}

and for the second contribution, using definition (26), we get [a/t > (4]3])*?]

3| dal + anps - )
ajt

x f dz {(c0s O)[ho(w — vy) — ho(w + v1)] + i(sin 0)
sup(a/t,w —ajt)

X [ho(v; + @) + ho(vy — w)]} .

+3[ dof? + 42 — o] f dz {(cos O)[ho(w — v3)

aft

~ ooy + )] — i(sin O)lo(w — v3) + ko> + )]}
aft
3 deo [(@? + dm)'? —
+ f( [(@ + 47" — w]

£lnpyii2

X fw”/tdz {{cos O)[hp(w — vy) — Ag(w + v1)]

1t

— i(sin O)[hg(w — v1) + holew + v1)]} (C.3)
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Except for long times and small velocities again, we may replace
sg w(w? + 47)Y2 — w by 2y/w and the integration limit (4|5])*? by 0. We
obtain the final result for U; :

+ o
U, = —gf dvy v1h0(v1)

2n
X f j—g ptexp{ipty, sin 8 — pt(1 — cos Hu(v,)}
0

X {(1 — COos ﬁ)fa/t dw [h{w — v1) — ho(w + ;)]
+ i(sin 6) f " oo e — 03) + o + 2]

+(1—cos ) f ? ‘i—‘” Uro(os — v1) — ho( + y)]

ia ., . * d
+ l?(sm H)J :w {ho(ew — v1) + Aglew + vl)]}
) alt
We have not justified here the way we have “linearized” with respect to

7 to get the results. This point is considered both in the text and in Appendix D.

C2. Limiting Cases (with Linearized Formulas)

(i) Long-time behavior. From the results of Appendix A quoted in
Table I, the predominant contribution to U, at large times is

+ o0
U, t:w _7)-[ dv, v1h0(vy)
246, . . .
X f > ipt(sin 0) exp[iptv; sin 8 — pt(l — cos Gufv,)]
4]
ajt
x { f des [ho(es — v1) + holw + )]
0
a(” dw
#2 Z o — 0 + e + )]
Jap @

+ ®
~ = UPGJ dvy v1h6(v,)

»27

X z—i i(sin 0) expliptvy sin 8 — pt(1 — cos Hu(vy)]

S0

y {~2ho<vl) LT dhon)

+ FP f: % oo + ) + ol — vl)]}
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where the FP J' symbol denotes the “finite part” of the integral. This leads
to an asymptotic behavior for U, of the form

[pa/(pt)?}[A4; In (pa/pt) + B;] (A;, B; constants)
which is different from the behavior encountered in Section 3. As an example,
let us calculate 4;. We have

+

a
A (::_Z)_z ~ 2npa f dv; v, 75%(01)

—

2n
X f %—07 i(sin 0) explipt(sin O, — pt(1 — cos Hu(v,)]

0
2 + d 012
- ”””f_w ? W) — 0,7
X ho?(v )l (pt[p?(v1) — v:%]?) expl — ptp(v,)]
where Io(x) is the modified Bessel function and I,'(x) is its derivative; we

calculate the above integral near v; = 0 using the asymptotic expansion
Io(x) ~ [1/(2mx)*"?] exp x and rewrite

Adipa  —2npa vz f e 3| pts
GiP ™ B 0] et e~
whence 4, ~ —n/m.
(i) In the opposite limit 1 — 0, we get

+ o
U, ~ —Wf dvy v1ho(vy)

t=0

y Jznggpt{(l —~ €08 B)J‘m dw [ho(w — v1) — (e + v1)]

0

+ i(sin 0) f " dos [hofew — 1) + holew + vl)]}

+ @
= - zﬂf dv; v1ho(vy) Erf(vy) pt

o«

whence U, |;-, = Oand (dU,/dt)|;~, = —n/v/m, which does not depend on a.
(iii)) When a = 0, then U; = 0, for obvious reasons, although when
a— oo,

+
U, ~ —nf dvy, viho(v4)

a—+© — w0

an

X f g—i et explipt(sin O)v; — pt(1 — cos Nu(v,)]
o

x [2(1 ~ cos 8) Erf(v,) + isin 6]

which does not depend on a.
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C3. Expression of the Two Remaining Terms

Once linearized, the expression for Us is

+ @
U, = ’%f deo ho(w)

< f - j—f (pt)? explipt(sin 8)w — ot(1 — cos Byu(w)]

“ dy v
(I, Tl )
x {(1 — cos 6)?[20V2 + w(zz) + p(za) — p(z1) — p(zs)]

+ (isin 022072 + pl(z) + plzs) — plz:) — p(zo)]

+ 2i(sin 6)(1 — cos O)[u(zz) + p(zs) — plz2) — p(z)l}

“ dv v
T _=)
J:z/t v 0('\/2

X {(1 — cos 0)? [2a;/§+ 2#(—\;—5 + w\/f)

+ @(-\% - wx/i) - i ;L(zi)]

i=1

2aV2

t

T (isin 9)2[ T e + ) — plz) - u(za]

+ 2i(sin )(1 — cos G)M% + wx/i)

- w5 - ov2) o + ] f)

where u(x) [=2®(x) = 2h,(x) + 2x Erf(x)] is again the frequency collision
and
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The last term U, reads

+w p 2 de
U, = —'qf de 5. Pt

o]

x expliptw sin 0 — pt(1 — cos O)M(w)]{(l — Cos 0)j %1{
aft

TNRENRES RN
- el + 1) = bl = )|
I O R R S
o = %) + bl = 1) = ho(whe(e + 1)
ot $ofe ol
S e
e R
oo Sl ol 3] bl
SR BA
]

The third term U, is responsible for the 1~* behavior for long times. The
integral behaves like

+ ®
Uy ~ —2npa f des ()

t—

P27

x J ~— cos O expliptw sin 6 — pt(1 — cos NHu(w)]
0 2m

<[ " dulho( + w) + (e — )]

The integrand becomes concentrated around w = 0 for long times,
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whence we obtain for the asymptotic behavior

Uy ~ ~2npa [ do ho@lo(pilpi(o) — aPR)e s = 2 B
2t—>00 np w W Ao W )Mol plip" (@ @ - (271)1/2 pt

As the integrand of U, and U; are exponentially decreasing when ¢ — 0
or a4 — 00, we can ensure that

a,| _dv,
dt t=0 - dt

and that the limiting function for large a is zero.

=10

t=0

Uzlz:o = U3lt=0 =

APPENDIX D. JUSTIFICATION OF THE LINEARIZATION

In this appendix, we shall consider in more detail the way in which we
get final contributions which are explicitly linear in 7. Indeed, by inspection
of (C.2) and (C.3), it appears at once that the » dependence of U, is quite
complicated so that it is not completely obvious to derive from (C.2) a
closed expression formally linear in 5, such as the one given in (C.4). The
following considerations will be applied directly to U;, as its computation is
carried out explicitly in Appendix C. Of course, they can be easily extended
to any contribution to §y(¢).

The final expression (C.4) is derived after three simplifications:
(i) linearization of the limit of integration [(2a/t)? + 4n]"/%; (ii) replacement
of (w? £ 479)'? — |w| by +27/|w|; (ili) replacement of (4|5[)*/? by 0.

Some explanations for the latter case were given in Section 3. Operations
(1), (i), and (iii) are surely valid when we deal with finite times only; we shall
examine the three operations successively.

(i) Linearization of [(2a/t)? +-4q]*'?. By neglecting = in the integration
bound of (C.2), we make an error of order

dow [(w? — 49)Y% — w] dz

4n + (20/8)21L12 ~alt
x [€%@hy(v, — w) — e P« Dhy(v; + w)]

for which a rough upper bound is

Jza/t inf(w ~ aft,2aw/t(w? - 4n)1/2)
[

2ajt aft
f do [0 + 4D — ]| dz [ho(oy + @) + ho(vs — )]
47+ (2a/t)?1112 —ajt
2alt
<2 dw [(0® + 4|7)Y? — w]

tan +(2a/t)2142 -

B <o)

as ajt is finite.
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w? > 4]q| [for expression (C.3)]. We carry out the proof for (w? + 49)*2 — w;
only small modifications are necessary for case (iii). Problems occur only
because of small velocities (w? ~ 4|n|). For w > a/t, the corrections to the
linearization with respect to n-are obviously of order %2 and so we shall not
consider them. When w > a/t, the right-hand side of (C.2) reduces to

w~aft

alt
1 fo dos [(* — 4)' — w] &2 ooy — @) — ho(or + )]

-aft

ho(vy ~ w) ~ ho(v, + o)

w

aft
- % f des w?[(w? — dn)2 — w)
0

More generally, we shall prove that integrals of the form

KWMMMM“4W”—M

where n > 1, $(0) # 0, oo, can be linearized. The absolute magnitude of the
correction

f: dw w"$(@)[(@® — 42 — w + (29/w)]

is smaller than
sup[$@)] | dor "l = (2je) = (? — 47)""]

which is of order %? when n > 1. If n = 1, the integration can be performed
and we find that the neglected term is of order 5*2,

We must keep in mind that, when we consider the self-diffusion co-
efficient, i.e., the time integral of 8¢(¢), a careful inspection of the long-time
(a/t ~ |7|¥?) and very long-time (a/r < [4|*'?) behavior is necessary. Indeed,
it is possible that, for instance, a very slow decrease of the velocity correlation
at times much larger than a|n|~ /2 yields ultimately a correction to the time
integral of this quantity of order (or even larger than) 7.

APPENDIX E. LIST OF THE CONTRIBUTIONS TO §z4(t)
For Vy, V5, and V5 we have

+ ©

2V, = 2npa dvy v1ho(v1)

-

2n
X f g—ﬁ explipt(sin Ov; — pt(1 — cos Ou(v,)]
0

* di
< [ oy = 1) = hofos + 9)
aft
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+®
2V, = —anaf dw dhy(w)

2m
X f a9 explipt(sin O)w — pt(l — cos Hu{w)]
o 2

x {cos 0 j Z d—u‘i [io(w — ©) — ho(w + )]

4+ isin 0 Jhw % [ho(w — ) + ho(w + v)]}

aft

+ o
2, = 2npa f deo o)

Vs

2n
% j ;1_0 pt explipt(sin O)w — pt(1 — cos O)u(w)]
0

.[:; v?i ho(\/Z){z(l ~ cosf)
X [1 - Erf(—\/—z - w\/f?:) - Erf(—\-/% + w\/i)]
— 2(1 — cos 0) + 2i(sin §)(1 — cos 6)
X [Erf(—\;i - w\/i) - Erf(vvi + w\/i)}}
— pan f +: dvy vho(or)

aAn
X f ;1_9 ptexplipty; sin 0 — pt(1 — cos Ou(v,)]
0

A o = )~ i + 0
alt
x {(1 — cos 6)*u(v;) — i(1 — cos B)(sin Ov,]
L oo, — o) + s + )
alt
x [(isin 8)%v; — i(sin )(1 — cos B)M(vl)]}
-2 f ECTC

2n
X f %—? (pt)? expliptv, sin 8 — pt(1 — cos Ou(v,)]
0

x {(1 — cos 0)?[F(v,) — F(—vy)]
+ i(sin 8)(1 — cos O[F(vy) + F(—vy)]
— (I = cos O[F(v,) + G(v1) — F(—v1) — G(—v,)]}

245
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with
Foy) = f/ Seho( ) |2 - ey - f & @ = 970)
+ [ ()| F v -1 - [y - 90

aw) = [ ()|~ ) - [ v = 0]

N (T

_ v dyf(y)]

SO) = ho(y) + « Erf(y)
the variables z; (i = 1-4), o, and B are given by

zy = (aft +v/2 + v)V2,  z = (ajt — v2 + BLV2
z3 = (aft + 0/2 — 0 )V2,  z, = (aft — v/2 — V2
« = (v, — V2, B = (v, +v2V2
and the functions Ay(x), Erf(x), and ¢(x) = u(x)/2 are again those of Egs.

(10) and (11).
For V; we have

+ 2n
Vs = —2f dwf %ig(ptf exp(iptw sin § — pt(1 — cos Npu(w)]
— 0

x {4(1 — cos 8)?F(w) — 2(i sin 6)2Fy(w)
+ i(sin 6)(1 — cos )[4F,(w) — 2Fx(w)] — 4(1 — cos O)F,(w)
+ 2i(sin 0)F5(w)}

with
inf(alt,u ~alt)
Fylw) = 2 " du [J dx (x + _‘}) (w — XYho(w — x)he(w + u — x)
alt u? t
20 sup(ajt,u—alt)
X (w+u—x)+— f . dx (w — X)ho(w — X)
aft

X holw +u — x)w +u— x)

- Lup(w o dx (x - ?) (w — x)ho(w — ho(w + v — x)w +u ~ x)]
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17 d inf(aft,u —ajt)
Fs(w)z—z-f 7‘;“ dx(x+?>(w-x)
[}

-aft
X holw — X)holw + u — x)w + u — x)
2(1 sup(a/t,u—ajt)
+ ~ dx{w — x)Yhe(w ~ x)

ajt
X holw + u — X w + u — x)

u+alt
a a
—J dxe(u——)(x~—)(w—x)
sup(a/t,u - aff) 4 !

X holw — X)holw + u — X)(w + u - x)]

and Fi(w) and Fy(w) are obtained by replacing the factor (w + u — x) by
ho(w) + (w + u — x) Erf w in Fy(w) and Fy(w), respectively.
For large ¢ and small w, Fs(w) reads

1"5(40)H~0o (aw/t)fa0 du ho?(u/V'2) = aw/[(27)V/212]
and

zpa + @ 2nd0 o
Vs t:/oo —Wj_w dw va i;_pt(l sin 9)

0
x explipt(sin o — pt(1 — cos Ouw)]
2pa (*° w?pt _ pte?
~ (2w>1’2f_m “ OBt exp[ 210)
2 pa

R Y

and the diverging term is exactly cancelled by the diverging term of U,.
For V, we have

+ ©
V, = ,4f deo ho(w)

X ang (p1)® explipt(sin Oy — pt(1 — cos Nu(w)]

x {2(1 — cos 0)°[Fy(w) + 2F(w)]

— 2i(sin 6)(1 — cos O)2[Fy(w) + 2Fy(w)]
— 4(1 — cos 0)[Fy(w) + Fy(w) — Gy(w)]
+ 2i(sin 6)(1 — cos O)[Fy(w) — Gy(w)}
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with

Fi(w) = %f: %Jm dx ho(w + v — X)hp(w — X)(w + v — X)

a inf(a/t,v - alt) a 2a 2a
X [E(U—?)fo dZ(Z +?) +T€(U"“t“)
inf(x,v+a/ft)
e et
{ sup(a/t,v -ait) t
1 © dl) inf(0,v —ajt)
— if ;gf dx holw — v + X)hg(w + X)(w + v — X)
0 ~
inf(0,v—aft)
X f dz (z + E)
sup(x, —ajt) !
@ v
Gyw) = — % d—l-;J dx ho(w + Xhp(w — v+ xN(w — v + x)e(v — c_z)
o UJo t
inf(a/t,u - aft,x)
[ el
o t t

2 a ~inflx,sup(a/t,v —a/t)} a
+ —¢lv — - J dZ elx — -
t t) Jan t

J. (2= D)l = sl =9))
- dz |z — - el x — sup|l—u — -
sup(alt,u - a/t) t t t

and similar formulas for Fy(w) and G,(w) by simply replacing (w + v — x)
by ho(w) + (w + v — x) Erf w in Fi(w) and G,(w), respectively.

The only remaining diverging term arises from the (7 sin 61 — cos 0),
but as explained in Appendix A, compensations appear and actually the term
V., behaves like ¢~2 instead of ¢~ 1.

v—alt
f dz
aft
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